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Abstract. We study a dynamic-contracting problem involving risk sharing
between two parties – the Proposer and the Responder – who invest in a risky
asset until an exogenous but random termination time. In any time period they
must invest all their wealth in the risky asset, but they can share the underlying
investment and termination risk. When the project ends they consume their final
accumulated wealth. The Proposer and the Responder have constant relative risk
aversion R and r respectively, with R > r > 0. We show that the optimal contract
has three components: a non-contingent flow payment, a share in investment risk
and a termination payment. We derive approximations for the optimal share in
investment risk and the optimal termination payment, and we use numerical simu-
lations to show that these approximations offer a close fit to the exact rules. The
approximations take the form of a myopic benchmark plus a dynamic correction. In
the case of the approximation for the optimal share in investment risk, the myopic
benchmark is simply the classical formula for optimal risk sharing. This benchmark
is endogenous because it depends on the wealths of the two parties. The dynamic
correction is driven by counterparty risk. If both parties are fairly risk tolerant, in
the sense that 2 > R > r, then the Proposer takes on more risk than she would
under the myopic benchmark. If both parties are fairly risk averse, in the sense
that R > r > 2, then the Proposer takes on less risk than she would under the
myopic benchmark. In the mixed case, in which R > 2 > r, the Proposer takes
on more risk when the Responder’s share in total wealth is low and less risk when
the Responder’s share in total wealth is high. In the case of the approximation
for the optimal termination payment, the myopic benchmark is zero. The dynamic
correction tells us, among other things, that: (i) if the asset has a high return then,
following termination, the Responder compensates the Proposer for the loss of a
valuable investment opportunity; and (ii) if the asset has a low return then, prior to
termination, the Responder compensates the Proposer for the low returns obtained.
Finally, we exploit our representation of the optimal contract to derive simple and
easily interpretable sufficient conditions for the existence of an optimal contract.
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1. Introduction

This paper considers a risk-sharing problem in which two investors pool their resources to

invest in a common risky venture. Investment returns are assumed to follow a geometric

Brownian motion, and the investors’ risk preferences are represented by utility functions

exhibiting constant relative risk-aversion (CRRA). The two investors have different coef-

ficients of relative risk-aversion and different initial wealth endowments. They can write

a long-term insurance contract specifying a division of final output contingent on the

sample path of output of the venture. The venture may end at any time with positive

probability, and when it ends the two investors consume their final accumulated wealth.

To keep the analysis tractable we have stripped out of the model many features which

would make it more realistic. For example, our model allows for only two investors, only

one risky asset, and investors only consume at the end. In addition, we simplify the for-

mulation of the optimal contracting problem by letting one individual, the Proposer, make

a take-it-or-leave-it contract offer to the other, the Responder. Even so, the analysis of

this optimal contracting problem is sufficiently complex that we are only able to approx-

imate the optimal risk-sharing rule. For reasonable parameter configurations, however,

this approximation is a good fit for the numerically determined optimal risk-sharing rule.

Optimal risk-sharing between two parties was first analyzed by Borch (1962), in the

context of a reinsurance problem. He considers an optimal contract to share risk between

an insurance and a reinsurance company (or between two insurance companies). While

his framework is more general in many respects than the one we have just described,

he only derives a necessary condition for optimal co-insurance between two risk-averse

investors, the well known Borch condition.

In this paper we push the analysis further and derive explicit risk-sharing formulae that

approximate the optimal risk-sharing rule. We do this by reformulating the risk-sharing

problem as a recursive problem in which the Proposer offers the Responder spot contracts,

each of which has three components: (i) a fixed transfer f to the Responder; (ii) a share s

of spot investment returns; and (iii) a final transfer b to be paid to the Responder in the

event that the venture terminates. We then derive relatively simple formulae for s and

b that approximate the optimal risk-sharing spot contract. Thus, a central contribution

of this paper is to derive (approximate) formulae for optimal risk-sharing for the CRRA

case.

As each investor’s aversion to risk and capacity to insure the other investor varies with
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its wealth, the optimal shares s and b vary with the underlying wealth distribution. Thus,

one advantage of our recursive formulation is that it brings out explicitly the underlying

dynamics of the risk-sharing problem. These dynamics can be understood as follows.

Whenever the two investors engage in risk-sharing, the optimal spot contract will specify

a division of total investment returns that is different from each investor’s share in total

wealth. As a result, the wealth distribution in the next period will be different from the

wealth distribution in this period. For example, if the Responder insures the Proposer, by

taking on a share of risk bigger than his share in wealth, then his wealth share will increase

when there is a high investment return and decrease when there is a low investment return.

Either way, the wealth distribution changes and consequently each investor’s attitude

towards risk and capacity to insure changes. This change in each investor’s capacity to

insure introduces endogenous counterparty risk, and forward-looking investors will take

this risk into account in deciding on the optimal spot contract.1

To gain insight into how this counterparty risk can affect optimal risk-sharing, consider

the extreme case in which the Responder is risk-neutral and the Proposer is risk-averse.

It is well known that optimal risk-sharing in a one-shot insurance contracting problem in

this case requires that the Responder insure the Proposer perfectly. But if the Responder

were to do this repeatedly, then he would be sure to go bankrupt at some point, and

then the Proposer would no longer be able to get any insurance at all. Foreseeing this,

the Proposer would want to hold back from getting perfect insurance. Only when the

Responder is relatively wealthy would the Proposer seek perfect insurance. When the

Responder is relatively poor, the Proposer may optimally limit the amount of insurance

she gets to preserve future insurance opportunities.

We are able to extend this insight to the general case, in which both investors are risk

averse, by assuming that both the Proposer and the Responder are close to myopic, and

by taking approximations around the myopic optimum. This approximation therefore

takes the form of a myopic benchmark plus a dynamic correction.

Consider first the optimal rule for the sharing of investment risk, namely s. The

myopic benchmark for s requires that the Responder take on a share in total investment

risk equal to the well known ratio of the Proposer’s coefficient of absolute risk aversion

1The role played by counterparty risk in our model is analogous to the role that it plays in futures
markets. There, traders are required to maintain margin accounts as a way of eliminating default.
Although these requirements prevent any default as such, they bear witness to the profound role played
by counterparty risk, and they constrain the amount of hedging a counterparty can offer.
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to the sum of both investors’ coefficients of absolute risk aversion. As for the dynamic

correction, if we denote by R and r the coefficients of relative risk aversion of the Proposer

and Responder respectively, then:

1. When both investors are fairly risk tolerant, in the sense that R, r < 2, it is opti-

mal for the less risk-averse investor to take on less risk in the dynamic-contracting

problem than the myopic rule would specify. This is because the less risk averse

investor is willing to take on risk on relatively unfavourable terms, so transferring

more risk to that investor tends to reduce the stock of insurance available to the

more risk averse investor in the future.

2. When both investors are fairly risk averse, in the sense that R, r > 2, it is optimal

for the less risk-averse investor to take on more risk in the dynamic-contracting

problem than the myopic rule would specify. This is because the less risk averse

investor is only willing to take on risk on relatively favourable terms, so transferring

more risk to that investor tends to increase the stock of insurance available to the

more risk averse investor in the future.

3. When one investor (say the Responder) is fairly risk tolerant but the other investor

(say the Proposer) is fairly risk averse, in other words when R > 2 > r, then the

Proposer takes on less risk when she is relatively poor and more risk when she is

relatively wealthy. This is because, when she is poor, her aversion to bearing risk

outweighs her concern that the Responder may run out of money; but when she is

rich, the opposite is true.

Consider next the optimal termination payment b. The myopic benchmark for b is

zero. This is because there is no termination risk in the myopic limit. As for the dynamic

correction, we show that: (i) if the venture has a high return then, following termination,

the less risk averse investor compensates the more risk averse investor for the loss of a

valuable investment opportunity; and (ii) if the venture has a low return then, prior to

termination, the less risk averse investor compensates the more risk averse investor for

the low returns obtained.

Although our model is highly stylized, it may be relevant to a number of applications.

We have already mentioned reinsurance as one application. Insurance companies are obvi-

ously capital constrained and they rely on each other to share common risk. Our analysis
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sheds light on how these companies should structure their risk sharing to take account of

counterparty risk. Another application, which was our initial motivation, is to portfolio-

or fund-management contracts. In practice, the contract between a representative client

and a fund manager often takes the simple form of a share of portfolio returns for the

client equal to the client’s share of investments in the fund minus a management fee,

which is equal to a small percentage of the funds under management. We recognize that

the main concern in portfolio management generally is the manager’s incentive to run

the fund in the client’s best interest. Still, we believe that our analysis may be relevant

if there are also dynamic risk-sharing considerations involved in the long-term relation

between the client and the manager.2

Besides Borch (1962) and the large literature on optimal risk sharing that it has

spawned (see Eeckhoudt, Gollier and Schlesinger, 2005) our paper is most closely related

to the dynamic asset pricing problem with two classes of investors considered by Dumas

(1989). He analyzes the equilibrium investment and consumption choices of two classes

of investor with different coefficients of relative risk aversion in an otherwise standard

competitive economy with aggregate shocks. Although Dumas mainly focuses on equi-

librium asset pricing, his analysis proceeds via a planning problem. One key difference

between his setup and ours is that he allows for ongoing consumption, while we only have

consumption upon termination. Another is that we have termination risk, while he only

considers an infinitely lived economy. Finally, Dumas’ solution method only works in the

case in which one investor has a log utility function.

There is by now accumulating evidence that consumers differ substantially in their risk

preferences. Indeed, Barsky, Juster, Kimball, and Shapiro (1997), in their experimental

study on risk-taking decisions, found that the behaviour of 5% of subjects was consistent

with a coefficient of relative risk aversion of 33 or higher, that the behaviour of another 5%

was consistent with a coefficient of 1.3 or lower, and that the median coefficient was about

7. Similarly, Guiso and Paiella (2008) and Chiappori and Paiella (2008) among others

find evidence of heterogeneous risk preferences in households’ actual portfolio allocations.

In addition, using panel data on individual portfolio allocations between risky and riskless

assets, Chiappori and Paiella (2008) are able to determine that the elasticity of the risky-

asset share with respect to wealth in their sample is small and statistically insignificant,

which is consistent with CRRA risk preferences. In another panel study on household

2For continuous-time models of portfolio-mangement contracts with moral-hazard and/or asymmetric
information see Ou-Yang (2003), Cvitanic and Zhang (2007) and Cvitanic, Wan, and Zhang (2008).
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portfolio choices, however, Paravisini, Rappoport and Ravina (2009) use investor fixed

effects and find that the within-household elasticity of risk taking with respect to changes

in household wealth is negative and quite large. They also find substantial heterogeneity

in relative risk aversion in their sample, with an average coefficient of 2.85 and a median

coefficient of 1.62.

The present paper is organized as follows. Section 2 describes the two investors’ prefer-

ences and the investment technology. Section 3 derives the value function of the Responder

under autarky. Section 4 formulates the long-run contracting problem between the Pro-

poser and Responder. Section 5 formulates the spot-contracting problem, and Section 6

derives the associated Bellman equation of the Proposer. Section 7 establishes that any

long-run contract for which the participation constraint of the Responder binds can be

replicated by a flow of spot contracts for which the spot participation constraint of the

Responder likewise binds. Section 8 shows that the Bellman equation of the Proposer un-

der spot contracting can be reduced to a partial differential equation. Section 9 provides

a first characterization of the optimal risk-sharing rule and termination payment in terms

of the value functions of the Proposer and Responder. Section 10 uses asymptotic ex-

pansions to derive risk-sharing formulae which approximate the optimal risk-sharing rule

and termination payment. Section 11 shows how the Bellman equation for the Proposer

can be further reduced to a pair of ordinary differential equations on (0, 1). Section 12

identifies sufficient conditions under which a solution to these equations extends contin-

uously to [0, 1]. Section 13 then solves the resulting two-point boundary-value problem

numerically. The numerical solutions show how well the formulae derived in Section 10

predict the qualitative shape of the optimal risk-sharing rule and termination payment,

suggesting that these formulae contain most of the analytical insight into optimal risk

sharing that can be obtained for our model. Section 14 offers some concluding comments.

2. Preferences and Technology

The initial wealths of the Proposer and the Responder are W0, w0 > 0. There is an

exogenous termination time T , which is distributed exponentially with parameter β > 0.

At any time t ∈ [0, T ] the parties have access to the same constant-stochastic-returns-
to-scale investment opportunity, but they cannot consume. For an investment x, this

investment opportunity yields flow returns

dx = x (μdt+ σ dz),
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where μ ∈ R, σ > 0 and z is a standard Wiener process (i.e. the shock dz at time t is

normally distributed with mean 0 and variance dt and is independent of the shocks at all

earlier times). Following termination, both parties consume their accumulated wealths

WT+ and wT+.3

The risk preferences of the Proposer and the Responder are represented by the strictly

increasing and strictly concave utility functions U and u. In what follows it will sometimes

be helpful to avoid imposing specific functional forms on U and u, but we shall frequently

assume that they take the constant relative risk aversion (CRRA) form

U(W ) = CR(W ) =

⎧⎪⎨⎪⎩
W 1−R − 1
1−R

if R 6= 1

log(W ) if R = 1

⎫⎪⎬⎪⎭
and

u(w) = Cr(w) =

⎧⎪⎨⎪⎩
w1−r − 1
1− r

if r 6= 1

log(w) if r = 1

⎫⎪⎬⎪⎭ ,

where R, r > 0. When we do not assume this,

R = R(W ) = −W U 00(W )

U 0(W )

and

r = r(w) = − wu00(w)

u0(w)

will denote the coefficients of relative risk aversion of U and u respectively.

Remark 1. Throughout the paper, the subscript R will denote the Proposer and the

subscript r will denote the Responder.

3. Autarky for the Responder

Consider first the case in which the Responder invests on his own. His value functionev : (0,∞) × {0, 1} → R for this case will provide his reservation value in the bilateral
3The notation here reflects the idea that WT+ and wT+ are the wealths of the two parties at the end

of period T . In what follows, these need to be distinguished from WT and wT , which are the wealths of
the two parties at the beginning of period T .
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contracting problems described below. It satisfies the Bellman equation

ev(w,χ) = ( E [ev(w + dw, χ+ dχ) ] if χ = 0

u(w) if χ = 1

)
(1)

where: w is the accumulated wealth of the Responder; χ is an indicator taking the value

0 if the problem has not yet terminated and the value 1 if the problem has terminated;4

dw = w (μdt+ σ dz);

and

dχ =

(
0 if the problem does not terminate

1 if the problem terminates

)
.

Putting v = ev(·, 0) in equation (1), we obtain
v(w) = E

£
v(w) + v0(w) dw + 1

2
v00(w) dw2 + (u(w)− v(w)) dχ

¤
= v(w) +

¡
v0(w)μw + 1

2
v00(w) σ2w2 + (u(w)− v(w))β

¢
dt

or

0 = 1
2
σ2w2 v00 + μw v0 + β (u(w)− v), (2)

where we have suppressed the dependence of v on w.

If r is constant, then equation (2) has an explicit solution. Indeed, given that wealth

follows a geometric Wiener process and that utility is CRRA, it is natural to conjecture

that v will take the form

v(w) = Cr(ρr w),

where ρr is the certainty-equivalent rate of return of the Responder under autarky. This

conjecture is correct, and leads to the following Proposition:

Proposition 2. Suppose that the Responder has constant relative risk aversion. Then
equation (2) has a solution of the form

v(w) = Cr(w) + wC 0
r(w)ψr,

4More precisely, the random function χ : [0,∞)→ {0, 1} is given by the formula χt = 0 if t ≤ T and
χt = 1 if t > T . In particular, in a reversal of the usual convention, χ is continuous on the left.
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where ψr =
μ− 1

2
r σ2

βr
and βr = β− (1− r) (μ− 1

2
r σ2) are the normalized value function

of the Responder and the effective discount rate of the Responder respectively. Moreover

v0(w) = γr C
0
r(w),

where γr =
β

βr
is the normalized marginal value of wealth of the Responder.

In particular, under autarky, the normalized value function of the Responder ψr is

simply the risk-adjusted rate of return μ− 1
2
r σ2 divided by the effective discount rate βr.

Proof. Suppose that v(w) = Cr(ρr w), and put ψr = Cr(ρr). Then

v(w) = Cr(ρr w) = Cr(w) + wC 0
r(w)Cr(ρr) = Cr(w) + wC 0

r(w)ψr,

u(w)− v(w) = Cr(w)− (Cr(w) + wC 0
r(w)ψr) = −wC 0

r(w)ψr,

v0(w) = ρr C
0
r(ρr w) = ρr C

0
r(ρr)C

0
r(w) = (1 + (1− r)ψr)C

0
r(w),

v00(w) = (1 + (1− r)ψr)C
00
r (w) = −

r

w
v0(w).

Hence, substituting in equation (2) and solving for ψr, we obtain

0 = 1
2
σ2w2 v00 + μw v0 + β (u(w)− v)

=
¡
μ− 1

2
r σ2

¢
w v0 − β wC 0

r(w)ψr

=
¡¡
μ− 1

2
r σ2

¢
(1 + (1− r)ψr)− β ψr

¢
wC 0

r(w)

=
¡
μ− 1

2
r σ2 − βr ψr

¢
wC 0

r(w),

where βr = β−(1−r) (μ− 1
2
r σ2). Dividing through by wC 0

r(w) then yields ψr =
μ−1

2
r σ2

βr
.

Hence 1 + (1− r)ψr =
β
βr
. Hence v0(w) = β

βr
C 0
r(w).

Since the marginal value of wealth and the normalized marginal value of wealth must

be positive, we see in particular that a basic requirement for our contracting problem to

make sense is that βr > 0, i.e. that:

Condition I. β > (1− r) (μ− 1
2
r σ2).

In other words, the rate of discounting β must exceed the rate of growth of utility

when wealth grows at the risk-adjusted rate of return μ− 1
2
r σ2.
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Remark 3. When r < 1, the utility function of the Responder is unbounded above. The
main point of Condition I is then to ensure that the wealth of the Responder cannot grow

too fast. When r > 1, the utility function of the Responder is unbounded below, and the

main point of Condition I is to ensure that the wealth of the Responder cannot shrink

too fast.

It is also natural to assume that the analogue of Condition I for the Proposer holds,

namely:

Condition II. β > (1−R) (μ− 1
2
Rσ2).

4. The Long-Run-Contracting Problem

Suppose that the Proposer offers the Responder a long-run contract q, according to which

the two parties will pool their wealths until termination, after which the wealth pool will

be shared between them. More precisely: let Ω denote the set of pairs (X,T ) such that

X : [0,∞)→ (0,∞) is continuous on the left,5 T ∈ [0,∞) and X is constant on (T,∞);6

and let q : Ω → R be a bounded measurable function such that 0 < q(X,T ) < XT+ for

all (X,T ) ∈ Ω.7 If the Responder accepts q then: the initial wealth pool will be

X0 =W0 + w0; (3)
5We assume that the timepaths of all of our variables are continuous on the left. This is a departure

from the usual convention, which is to take the timepaths of variables to be continuous on the right.
We do this because, in order to write our various Bellman equations in a compact way, it is helpful to
have W , w and χ, which are short for Wt, wt and χt, denote the values of the Proposer’s wealth, the
Responder’s wealth and the termination indicator at the beginning of period t; and to have W + dW ,
w + dw and χ+ dχ denote the values of these variables at the end of period t.

6In view of our convention that the timepaths of variables are continuous on the left, the timepath of
a variable over the stochastic interval [0, T ] tells us the value of the variable at the beginning of every
period t ∈ [0, T ] and – by taking limits on the right – the value of the variable at the end of every period
t ∈ [0, T ). In particular, it tells us the initial value of the variable, i.e. the value at the beginning of
period 0, but not the final value of the variable, i.e. the value at the end of period T . (If we adopted the
usual convention, namely that the timepaths of variables are continuous on the right, then the timepath
of a variable over the stochastic interval [0, T ] would tell us the final value of the variable at the end
of period T but not the initial value of the variable at the beginning of time 0.) We therefore need to
supply the final value. We do this by requiring that the variable be defined but constant on (T,∞), and
by interpreting the value there as the final value. This convention has the advantage that the value at
the end of period T can – like the values at the end of any other period t ∈ [0, T ) – be found by taking
the limit on the right.

7Notice that the information conveyed by the pair (X,T ) consists of: T , which is the termination
time; the restriction of X to the interval [0, T ], which tells us the value Xt of X at the beginning of each
period t ∈ [0, T ] and the value Xt+ of X at the end of each period t ∈ [0, T ); and the value of X on
the interval (T,∞), which tells us the value XT+ of X at the end of each period T . The final payment
q(X,T ) can depend on all this information.
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the wealth pool will evolve according to the equation

dX =

(
X (μdt+ σ dz) if t ∈ [0, T ]

0 if t ∈ (T,∞)

)
; (4)

and the final wealths of the Proposer and the Responder will be

WT+ = XT+ − q(X,T ) and wT+ = q(X,T ). (5)

If the Responder rejects q then both parties will operate under autarky until termination.8

In the long-run contracting problem, the Proposer’s problem is therefore to choose q

to maximize her expected utility

E[U(WT+)] (6)

subject to the dynamics (3-5) and the participation constraint of the Responder, namely

E[u(wT+)] ≥ v(w0), (7)

where v is the value function of the Responder under autarky.

Three points should be noted. First, taken together, Conditions I and II ensure that

the expected payoffs of both parties are well defined in the event of disagreement. Second,

the Proposer can always do at least as well in the long-run contracting problem as she

can under autarky. This is because she can reproduce the autarky outcome by offering

the contract

q(X,T ) =
w0

W0 + w0
XT+.

Third, the participation constraint of the Responder always binds in the long-run con-

tracting problem. For, if it did not, then the Proposer could just scale down q until the

participation constraint of the Responder did bind. This would have the effect of trans-

ferring a strictly positive — albeit stochastic — amount of the final total wealth from the

Responder to the Proposer, and would therefore make the Proposer strictly better off.

The main challenge in establishing the existence of an optimal contract is therefore

to show that the expected payoff of the Proposer is bounded above. One of the many

advantages of the spot-contracting problem introduced below is that it allows us to find

8Since X is continuous, total wealth XT+ at the end of period T is equal to total wealth XT at the
beginning of period T . We write XT+ in the interests of notational consistency.



The Dynamics of Optimal Risk Sharing 12

transparent sufficient conditions under which this is the case.

5. The Spot-Contracting Problem

The easiest way to solve the long-run contracting problem is to show that it can be reduced

to a spot contracting problem. In a spot contracting problem, the two parties start out

with their initial wealths W0 and w0. Then, in each period t ∈ [0, T ], the Proposer offers
the Responder a spot contract

(f, s, b) ∈ R×R×
¡
− w

W+w
, W
W+w

¢
.

If the Responder accepts then he receives:

1. a non-contingent transfer (W + w) f dt, which is an up-front payment for his par-

ticipation in the risk-sharing arrangement;

2. a contingent transfer (W +w) s (μdt+ σ dz), which is his share in the total returns

on investment; and

3. a contingent transfer (W +w) b dχ, which is an insurance payment in the event that

he loses the investment opportunity as a result of termination.

More explicitly, if the Responder accepts, then the changes in the wealths of the Proposer

and the Responder are

dW = (W + w) (−f dt+ (1− s) (μdt+ σ dz)− b dχ) , (8)

dw = (W + w) (f dt+ s (μdt+ σ dz) + b dχ) . (9)

If the Responder rejects the spot contract, then both parties invest under autarky for the

current period, and the changes in the wealths of the Proposer and the Responder are

dW = W (μdt+ σ dz), (10)

dw = w (μdt+ σ dz). (11)

In each period t ∈ (T,∞), dW = dw = 0. Finally, at the end of period T , both parties

consume their accumulated stock of wealth to obtain utilities U(WT+) and u(wT+).
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6. The Bellman Equation of the Proposer

In this section, we consider the case of the spot contracting problem in which the value

function of the Responder is his value function under autarky, namely ev, and the spot
contract offered by the Proposer is always accepted. As will become clear in the next

section, this is the only case that we shall need. In this case, the Bellman equation of the

Proposer can be derived as follows. Suppose that χ = 0 and, for any given spot contract

(f, s, b), put

dW S = (W + w) (−f dt+ (1− s) (μdt+ σ dz)− b dχ) ,

dwS = (W + w) (f dt+ s (μdt+ σ dz) + b dχ) ,

dWA = W (μdt+ σ dz),

dwA = w (μdt+ σ dz).

In other words, let dW S and dwS be the changes in the wealth of the Proposer and the

Responder if (f, s, b) is accepted; and let dWA and dwA be the changes in the wealth of

the Proposer and the Responder if (f, s, b) is rejected.

Further, let A(w) denote the set of (f, s, b) such that:

1. the participation constraint of the Responder, namely

E
£ ev(w + dwS, dχ)

¤
≥ E

£ ev(w + dwA, dχ)
¤
, (12)

is satisfied; and

2. the Bellman equation of the Responder, namely

ev(w, 0) = E £ ev(w + dwS, dχ)
¤
, (13)

is satisfied.

Then the Bellman equation of the Proposer is the equation

eV (W,w, χ) =

⎧⎨⎩ max
(f,s,b)∈A(w)

E
heV (W + dWS, w + dwS, χ+ dχ)

i
if χ = 0

U(W ) if χ = 1

⎫⎬⎭ , (14)

where eV : (0,∞)2 × {0, 1}→ R.
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Here inequality (12) says that the Responder weakly prefers to accept (f, s, b) rather

than proceed under autarky when his continuation utility is given by ev; equation (13)
says that ev(w, 0) is the expected utility to the Responder from accepting (f, s, b) when his
continuation utility is given by ev; and equation (14) says that if χ = 0 then eV (W,w, χ)

is the expected utility to the Proposer from choosing the best feasible (f, s, b) when her

continuation utility is given by eV , and that if χ = 1 then eV (W,w, χ) is simply U(W ).

Notice that the Proposer can always ensure that the participation constraint of the

Responder is satisfied by choosing f = 0, s = w
W+w

and b = 0. In other words, the

Proposer can always reproduce the autarky outcome by a suitable choice of spot contract.

Notice too that the only reason why dWA does not feature explicitly in these equations

is that ev does not depend on W . Notice finally that, in the special case with which we

are concerned (namely the case in which the value function of the Responder under spot

contracting is simply his value function under autarky), the participation constraint holds

as an equality:

Lemma 4. The following three statements are equivalent:

1. (f, s, b) ∈ A(w), i.e. both the participation constraint and the Bellman equation of

the Responder hold;

2. E
£ ev(w + dwS, dχ)

¤
= E

£ ev(w + dwA, dχ)
¤
, i.e. the participation constraint of the

Responder holds as an equality;

3. ev(w, 0) = E £ ev(w + dwS, dχ)
¤
, i.e. the Bellman equation of the Responder holds.

Proof. We show first that statement 3 implies statement 2. Indeed, since ev is the
value function of the Responder under autarky, we have

ev(w, 0) = E £ ev(w + dwA, dχ)
¤
. (15)

Combining this with statement 3 leads immediately to statement 2. We show next that

statement 2 implies statement 1. Indeed, if statement 2 holds then, a fortiori, the partic-

ipation constraint of the Responder must hold. On the other hand, combining statement

2 with equation (15) shows that the Bellman equation of the Responder is satisfied. That

statement 1 implies statement 3 is trivial.
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7. Replicating a Long-Run Contract

In this section, we show that any long-run contract for which the participation constraint

of the Responder holds as an equality can be replicated by a flow of spot contracts for

which the participation constraint of the Responder again holds as an equality. More

precisely: recall that v = ev(·, 0) is the value function of the Responder under autarky
prior to termination; suppose that we are given a long-run contract q : Ω→ (0,∞) such
that E[u(q(X,T ))] = v(w0); let Ft denote the information available up to the beginning

of period min{t, T};9 ,10 and put

mt = E [u(q(X,T )) | Ft ] .

Then: m0 = v(w0) by choice of q; m is a martingale; and we may apply the martingale

representation theorem to show that there exist coefficients η and θ such that

dm = η dz + θ (dχ− β dt).

Here: dz and dχ are the innovations to information at time t; η and θ depend only on

information available at the beginning of period t; and, by subtracting β dt from dχ, we

ensure that E [dm | Ft ] = 0. Moreover: m is continuous on [0, T ]; m may jump at T ; and

m is constant and equal to u(q(X,T )) on (T,∞).
Next, define the certainty-equivalent wealth process c of the Responder by the formula

ct =

(
v−1(mt) if t ∈ [0, T ]
u−1(mt) if t ∈ (T,∞)

)
.

In other words, let ct be the unique solution of the equation ev(ct, χt) = mt. Then:

9Up to now we have largely suppressed the time subscipt. However, the argument given at the end of
the section makes explicit use of two different times, namely t and t + dt, and it is therefore helpful to
make the time subsscript explicit on the four variables that are involved in that argument, namely F , m,
c and χ.
10The underlying stochastic drivers of our model are the standard Wiener process z and the exponen-

tially distributed termination time T . If t > T , then the information available up to the beginning of
time t includes the timepath of z over the interval (T, t]. By conditioning only on information available
at the beginning of period min{t, T}, we exclude the use of this additional stochastic information.
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c0 = v−1(m0) = w0; it follows from Itô’s Lemma that, for t ∈ [0, T ], we have

dc =
¡
1
2
η2 g00(mt)− β θ g0(mt)

¢
dt+ η g0(mt) dz

+
¡
u−1(mt + θ)− g(mt)

¢
dχ, (16)

where g = v−1; and c is constant and equal to q(X,T ) on (T,∞).
Now, if we match the coefficients of dt, dz and dχ in equation (9) for the dynamics

of the wealth of the Responder in the spot-contracting problem with the coefficients of

dt, dz and dχ in equation (16) for the dynamics of the certainty-equivalent wealth of the

Responder in the long-run contracting problem, then we get

X (f + s μ) = 1
2
η2 g00(mt)− β θ g0(mt), (17)

X sσ = η g0(mt), (18)

X b = u−1(mt + θ)− g(mt). (19)

Solving this system of linear equations for (f, s, b) yields

f =
1
2
σ η2 g00(mt)− (σ β θ + μη) g0(mt)

X σ
, (20)

s =
η g0(mt)

X σ
, (21)

b =
u−1(mt + θ)− g(mt)

X
. (22)

In other words, q can be reproduced by the flow of spot contracts given by the formulae

(20-22). Furthermore, for all t ∈ [0,∞), we have

E [ev(ct + dc, χt + dχ) | Ft ] = E
£ ev(ct+dt, χt+dt) | Ft

¤
= E [mt+dt | Ft ]

= E [mt + dm | Ft ]

= mt

= ev(ct, χt).
In other words, the Bellman equation of the Responder holds. By Lemma 4, this is equiv-

alent to saying that the Participation constraint of the Responder holds as an equality.
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8. The Reduced Bellman Equation

In the long-run contracting problem, the Proposer can always do better by choosing a

contract for which the participation constraint of the Responder holds as an equality.

Furthermore, any such contract can be replicated by a flow of spot contracts for which

the participation constraint of the Responder again holds as an equality. The Proposer

can therefore always do at least as well in the spot-contracting problem as in the long-run

contracting problem. It is therefore of considerable interest to solve the spot-contracting

problem.

In this section, we make a start by showing that the Bellman equation of the Proposer

under spot contracting, namely equation (14), can be reduced to a partial differential

equation, namely equation (23) below. To this end: put V = eV (·, 0); denote the partial
derivatives of V by VW , Vw, VWW , VWw and Vww; and let VP = VW−Vw, VWP = VWW−VWw

and VPP = VWW − 2VWw + Vww. Then:

Proposition 5. V satisfies the equation

0 = max
(s,b)∈R×(− w

W+w
, W
W+w)

½
μ (W + w)VW

+ 1
2
σ2 (W + w)2

µ
VWW − 2 s VWP + s2 VPP +

VP
v0

s2 v00
¶

+ β

µ
U(W − (W + w) b)− V +

VP
v0
(u(w + (W + w) b)− v)

¶¾
. (23)

We shall refer to equation (23) as the reduced Bellman equation of the Proposer. The

maximand in this equation involves three main terms. The first term is

μ (W + w)VW . (Term 1)

In order to bring out the analogy with the other terms in the equation, it is helpful to

separate this term into two parts. The first part is

(1− s)μ (W + w)VW + s μ (W + w)Vw. (Term 1a)

This is the direct benefit to the Proposer of the expected return on total wealth when it
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is shared according to the sharing rule s. It consists of: the Proposer’s share 1− s in the

expected return μ (W + w) times the shadow value VW to the Proposer of wealth in the

hands of the Proposer; plus the Responder’s share s in the expected return μ (W + w)

times the shadow value Vw to the Proposer of wealth in the hands of the Responder. The

second part is

s μ (W + w)VP (Term 1b)

This is the indirect benefit to the Proposer of the expected return on total wealth when

it is shared according to the sharing rule s. In this part: s μ (W + w) is the Responder’s

share in the expected return μ (W + w); and VP is the shadow value to the Proposer of

transfers from the Responder to the Proposer. Notice that: the shadow value of transfers

VP = VW − Vw takes into account both the impact of a transfer on the Proposer’s own

wealth (as measured by VW ) and the impact of a transfer on the Responder’s wealth (as

measured by Vw); and the impact of a transfer on the Responder’s wealth must be taken

into account since (by making the Responder poorer) a transfer may worsen the terms on

which the Proposer can get insurance from the Responder in the future.

The second term consists of two parts. The first part (with sign reversed) is

−1
2
σ2 (W + w)2

¡
VWW − 2 s VWP + s2 VPP

¢
. (Term 2a)

This is the direct cost to the Proposer of the investment shocks when they are shared

according to the sharing rule s. It can be written more explicitly as

−1
2
σ2 (W + w)2

¡
(1− s)2 VWW + 2 s (1− s)VWw + s2 Vww

¢
.

Notice that the Proposer cares about shocks to her own wealth, about shocks to the

Responder’s wealth (since these affect the terms on which she can obtain insurance) and

about the correlation between the shocks to her own wealth and those to the wealth of

the Responder. The second part of the second term (with sign reversed) is

−1
2
σ2 (W + w)2

VP
v0

s2 v00. (Term 2b)

This is the indirect cost to the Proposer of the shocks to W and w when they are shared

according to the sharing rule s. In this part: −1
2
σ2 (W + w)2 s2 v00 is the cost to the

Responder of the shocks; v0 is the shadow value to the Responder of wealth in the hands
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of the Responder; and VP is the shadow value to the Proposer of transfers from the

Responder to the Proposer. The cost to the Responder is initially measured in units of

the Responder’s utility. Dividing it by v0 converts it into money terms, at which point its

value to the Proposer can be found by multiplying by VP . The second part of the second

term can also be written
1
2
σ2 (W + w)2 VP

µ
−v

00

v0

¶
s2,

which emphasizes the role played by the absolute risk aversion of the Responder (namely

−v00

v0 ). Notice that the absolute risk aversion of the Responder is endogenous (it depends

on w).

The third term likewise consists of two parts. The first part (with sign reversed) is

β (V − U(W − (W + w) b)). (Term 3a)

This is the direct cost to the Proposer of termination when it is insured using the payment

b. The second part of the third term (with sign reversed) is

VP
v0

β (v − u(w + (W + w) b)). (Term 3b)

This is the indirect cost to the Proposer of termination when it is insured using the

payment b. In this part: β (v − u(w + (W + w) b)) is the cost to the Responder of the

possibility of termination; v0 is, as above, the shadow value to the Responder of wealth

in the hands of the Responder; and VP is, as before, the shadow value to the Proposer of

transfers from the Responder to the Proposer.

To summarize, under spot contracting, the Proposer takes into account the expected

return obtained by both parties, the costs to both parties of the shocks to wealth as

mitigated by the risk-sharing rule s and the costs to both parties of the termination risk

as mitigated by the risk-sharing rule b. The maximand of the Proposer involves three

terms: a term in μ; a term in σ2; and a term in β. The term in μ does not involve either

of the control variables s or b; the term in σ2 involves only s; and the term in β involves

only b. The problem of optimizing s is therefore separable from the problem of optimizing

b.

Proof. In view of Lemma 4, (f, s, b) ∈ A(w) iff equation (13) holds. Putting v = ev(·, 0)
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in that equation, we obtain

v(w) = E
£
v(w) + v0(w) δw + 1

2
v00(w) δw2 + (u(w +∆w)− v(w))

¤
,

where

δw = (W + w) (f dt+ s (μdt+ σ dz)),

∆w = (W + w) b dχ.

Hence

v = v +
³
(W + w) (f + s μ) v0 + 1

2
(W + w)2 σ2 s2 v00

+ β (u(w + (W + w) b)− v)
´
dt,

where we have suppressed the dependence of v and its derivatives on w, or

(W + w) (f + s μ) = −1
2
(W + w)2 σ2 s2

v00

v0
− β

u(w + (W + w) b)− v

v0
. (24)

We conclude that A(w) can be characterized as the set of (f, s, b) such that equation (24)

holds.

Next, putting V = eV (·, 0) in equation (14), we obtain
V (W,w) = max

(f,s,b)∈A(w)
E
h
V (W,w) + VW (W,w) δW + Vw(W,w) δw

+ 1
2

¡
VWW (W,w) δW 2 + 2VWw(W,w) δW δw + Vww(W,w) δw2

¢
+ (U(W +∆W )− V (W,w))

i
,

where

δW = (W + w) (−f dt+ (1− s) (μdt+ σ dz)),

∆W = −(W + w) b dχ
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and δw is as above. Hence

V = max
(f,s,b)∈A(w)

n
V +

³
(W + w) (−f + (1− s)μ)VW + (W + w) (f + s μ)Vw

+ 1
2
(W + w)2 σ2

¡
(1− s)2 VWW + 2 s (1− s)VWw + s2 Vww

¢
+ β (U(W − (W + w) b)− V )

´
dt
o
,

where we have suppressed the dependence of V and its derivatives on (W,w), or

0 = max
(f,s,b)∈A(w)

n
(W + w)μVW − (W + w) (f + s μ) (VW − Vw) +

+ 1
2
(W + w)2 σ2

¡
(1− s)2 VWW + 2 s (1− s)VWw + s2 Vww

¢
+ β (U(W − (W + w) b)− V )

o
.

Using equation (24) to substitute for (W +w) (f + s μ), taking advantage of the notation

VP , VWP and VPP and rearranging, we obtain equation (23).

9. First-Order Conditions for s and b

In this section, we give a preliminary characterization of the optimal sharing rule s and

the optimal termination payment b in terms of the value functions V and v of the Proposer

and the Responder.

Proposition 6. The optimal sharing rule s takes the form

s =
−VPP

VP
− VwP

VP

−VPP
VP
− v00

v0

. (25)

Proof. Maximizing the maximand in the reduced Bellman equation of the Proposer,
namely equation (23), with respect to s boils down to maximizing the quadratic

VWW − 2VWP s+

µ
VPP +

VP
v0

v00
¶
s2
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with respect to s. Assuming that VPP + VP
v0 v

00 > 0,11 this yields

s =
VWP

VPP +
VP
v0 v

00
.

Noting that VWP = VPP + VwP and dividing through by −VP , we obtain the desired
expression.

Expression (25) for the optimal dynamic sharing rule summarizes the main economic

issues underlying our risk-sharing problem. In order to understand it better, it is helpful

to compare it with the optimal static sharing rule

sS =
−U 00

U 0

−U 00

U 0 −
u00

u0

.

Compared with this rule, the optimal dynamic rule exhibits three complications. First,

the exogenous utility functions U and u are replaced with the endogenous value functions

V and v. Second, the risk aversion of the Proposer is evaluated not with respect to her

own wealthW , but instead with respect to the difference between her own wealth and that

of the Responder, namely P =W − w.12 Third, there is an additional term −VwP
VP

in the

numerator. This term captures the idea that current changes in the Responder’s wealth

have implications for the price at which the Proposer will be able to obtain insurance in

the future.13

Proposition 7. The optimal termination payment b is the unique solution of

U 0(W − (W + w) b)

u0(w + (W + w) b)
=

VP
v0
. (26)

Proof. Maximizing the maximand in the reduced Bellman equation of the Proposer
with respect to b boils down to maximizing

U(W − (W + w) b)− V +
VP
v0
(u(w + (W + w) b)− v)

11It can be shown quite generally that VPP + v00 VPv0 ≥ 0, and our later analysis will confirm that this
inequality is strict when both parties have constant relative risk aversion.
12The risk aversion of the Responder is still evaluated with respect to his own wealth since v does not

depend on W .
13The analogous term for the Responder does not occur since v does not depend on W .
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with respect to b. This expression is strictly concave in b, and the first-order condition

for this maximization is

0 = (W + w)

µ
−U 0(W − (W + w) b) +

VP
v0

u0(w + (W + w) b)

¶
.

Rearranging, we obtain the desired equation.

The optimality condition (26) is akin to the familiar Borch condition. The optimal

final transfer is set so that the ratio of the Proposer’s and the Responder’s marginal utility

of wealth in the event that termination occurs is equal to the ratio of the Proposer’s and

the Responder’s marginal value of transfers (in the event that termination does not occur).

The close analogy between this optimality condition and the Borch condition suggests that

VP and v0 can be interpreted as the welfare weights of the Proposer and the Responder

in a welfare maximization problem.

10. Asymptotic Expansions

A first approach to understanding optimal risk sharing is to consider what happens when

β is large, i.e. when the future is heavily discounted. More precisely, we look for ap-

proximations to V , v, s and b in the form V (0) + 1
β
V (1), v(0) + 1

β
v(1), s(0) + 1

β
s(1) and

b(0) + 1
β
b(1). A striking feature of these approximations is that they give a qualitatively

accurate picture of the behaviour of V , v, s and b even when β takes on much more

moderate values, as is demonstated by our numerical simulations in Section 13 below.

10.1. Myopic Terms. We begin by indentifying the myopic components of V , v, s

and b, namely V (0), v(0), s(0) and b(0).

Proposition 8. V (0) = U , v(0) = u, s(0) =
−U 00

U 0

−U 00

U 0 −
u00

u0

and b(0) = 0.

These expressions can be explained as follows. First, at order 0, the relationship ends

immediately. The myopic value functions V (0) and v(0) are therefore simply the respective

utilities U and u of consuming current wealth. Second, the myopic sharing rule s(0) is

the familiar ratio of the Proposer’s coefficient of absolute risk aversion to the sum of the

two parties coefficients of absolute risk aversion. Third, the myopic termination payment

b(0) is zero because, when β is very large, termination is essentially certain and it is not

therefore possible to insure against it.
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Proof. Dividing the Bellman equation of the Responder under autarky, namely (2),
through by β and rearranging, we obtain

0 = u(w)− v + 1
β

¡
1
2
σ2w2 v00 + μw v0

¢
.

Hence, putting v = v(0) + 1
β
v(1), denoting the first and second derivatives of v(0) by v

(0)
w

and v
(0)
ww and rearranging, we obtain

0 = u(w)− v(0) + 1
β

¡
1
2
σ2w2 v(0)ww + μw v(0)w − v(1)

¢
+O

³
1
β2

´
. (27)

Hence, equating terms of order 0, we obtain v(0) = u(w).

Second, dividing the Bellman equation of the Responder under spot contracting,

namely (24), through by β and rearranging, we obtain

0 = u(w + (W + w) b)− v + 1
β

³
1
2
(W + w)2 σ2 s2 v00 + (W + w) (f + s μ) v0

´
Hence, putting v = v(0) + 1

β
v(1), f = f (0) + 1

β
f (1), s = s(0) + 1

β
s(1) and b = b(0) + 1

β
b(1),

and equating terms of order 0, we obtain v(0) = u(w+(W +w) b(0)). But we have already

shown that v(0) = u(w). It follows that b(0) = 0.

Third, dividing the reduced Bellman equation of the Proposer, namely (23), through

by β and rearranging, we obtain

0 = max
(s,b)∈R×(− w

W+w
, W
W+w)

⎧⎨⎩U(W − (W + w) b)− V

+
VP
v0

³
u(w + (W + w) b)− v

´
+ 1

β

⎛⎝μ (W + w)VW

+ 1
2
σ2 (W + w)2

µ
VWW − 2 s VWP + s2 VPP +

VP
v0

s2 v00
¶⎞⎠⎫⎬⎭ .

Hence, putting V = V (0) + 1
β
V (1), v = v(0) + 1

β
v(1), s = s(0) + 1

β
s(1) and b = b(0) + 1

β
b(1),

bearing in mind the envelope principle (which tells us that — in calculating first-order terms

— we need not consider first-order variations in s and b), denoting the first derivative of
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v(1) by v(1)w and rearranging, we obtain

0 = U(W − (W + w) b(0))− V (0) +
V
(0)
P

v
(0)
w

¡
u(w + (W + w) b(0))− v(0)

¢

+ 1
β

Ã
−V (1) − v(1)

V
(0)
P

v
(0)
w

+
¡
u(w + (W + w) b(0))− v(0)

¢ V (1)
P v

(0)
w − V

(0)
P v

(1)
w¡

v
(0)
w

¢2
+ μ (W + w)V

(0)
W

+ 1
2
σ2 (W + w)2

Ã
V
(0)
WW − 2 s(0) V

(0)
WP +

¡
s(0)
¢2

V
(0)
PP +

V
(0)
P

v
(0)
w

¡
s(0)
¢2

v(0)ww

!⎞⎟⎠

+O
³
1
β2

´
.

Hence, taking advantage of the fact that b(0) = 0 and v(0) = u,

0 = U(W )− V (0) + 1
β

Ã
−V (1) − v(1)

V
(0)
P

u0
+ μ (W + w)V

(0)
W

+ 1
2
σ2 (W + w)2

µ
V
(0)
WW − 2 s(0) V

(0)
WP +

¡
s(0)
¢2

V
(0)
PP +

¡
s(0)
¢2 u00

u0
V
(0)
P

¶⎞⎟⎠

+O
³
1
β2

´
. (28)

Hence, equating terms of order 0, V (0) = U(W ).

Fourth, the first-order condition for the optimal sharing rule, namely (25), takes the

form

s =
−VPP

VP
− VwP

VP

−VPP

VP
− v00

v0

.
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Hence, putting V = V (0) + 1
β
V (1), v = v(0) + 1

β
v(1) and s = s(0) + 1

β
s(1), and equating

terms of order 0, we obtain:

s(0) =

−
V
(0)
PP

V
(0)
P

−
V
(0)
wP

V
(0)
P

−
V
(0)
PP

V
(0)
P

−
v
(0)
ww

v
(0)
w

.

Finally, recalling that V (0) = U and v(0) = u, we obtain the required expression.

10.2. Dynamic Terms: V (1) and v(1). In this section we determine the dynamic

corrections V (1) and v(1) by equating the terms of order 1 in 1
β
in the relevant equations.

Proposition 9. We have:

1. V (1) =

µ
(μ− 1

2
Rσ2)W + 1

2

(R− r)2 σ2

R
W
+ r

w

¶
U 0(W );

2. v(1) =
µ
(μ− 1

2
r σ2)w

¶
u0(w).

where we have suppressed the dependence of R and r on W and w respectively.

In other words, the dynamic correction V (1) is composed of three elements: the risk-

adjusted rate of return on the Proposer’s wealth, namely

(μ− 1
2
Rσ2)W ;

the monetary value of the gains from sharing investment risk, namely

1
2

(R− r)2 σ2

R
W
+ r

w

;

and the marginal utility of wealth U 0(W ). The first two elements are measured in units

of wealth. Multiplying them by U 0(W ) converts them into units of the Proposer’s util-

ity. Similarly, v(1) is composed of two elements: the risk-adjusted rate of return on the

Responder’s wealth, namely

(μ− 1
2
r σ2)w;

and the marginal utility of wealth u0(w).
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Notice that there is no contribution to V (1) reflecting the monetary value of the gains

from sharing termination risk. Such a contribution would be expected to arise at order

2. However, exploring higher-order terms in the expansions is beyond the scope of this

paper.14 Also, in accordance with the bargaining positions of the two parties, the Respon-

der does not receive any share in the gains from sharing investment risk. Finally, these

formulae do not depend on the assumption that U and u are CRRA. (The formulae for

s(1) and b(1) below do.)

Proof. Equating terms of order 1 in equation (27), we obtain

0 = 1
2
σ2w2 v(0)ww + μw v(0)w − v(1).

Hence, using the fact that v(0) = u and rearranging, we obtain

v(1)

u0
=

µ
μ+ 1

2
σ2

wu00

u0

¶
w =

¡
μ− 1

2
r σ2

¢
w

as required. Next, equating terms of order 1 in equation (28),

0 = −V (1) − v(1)
V
(0)
P

u0
+ μ (W + w)V

(0)
W

+1
2
σ2 (W + w)2

µ
V
(0)
WW − 2 s(0) V

(0)
WP +

¡
s(0)
¢2

V
(0)
PP +

¡
s(0)
¢2 u00

u0
V
(0)
P

¶
.

Hence, taking advantage of the fact that V (0) = U and rearranging,

V (1)

U 0 = μ (W + w) + 1
2
σ2 (W + w)2

µ¡
1− s(0)

¢2 U 00

U 0 +
¡
s(0)
¢2 u00

u0

¶
− v(1)

u0
.

Finally, putting

v(1)

u0
=
¡
μ− 1

2
r σ2

¢
w, s(0) =

−U 00

U 0

−U 00

U 0 −
u00

u0

,
U 00

U 0 = −
R

W
and

u00

u0
= − r

w
,

14Such contributions do occur in Conditions III and IV in Section 12 below.
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and rearranging, we obtain

V (1)

U 0 = (μ−
1
2
Rσ2)W + 1

2

(R− r)2 σ2

R
W
+ r

w

,

as required.

10.3. Dynamic Terms: s(1). In this section we determine the dynamic correction

s(1) to the myopic sharing rule s(0). This correction is of interest for two reasons. First, it

allows us to make qualitative predictions as to how the optimal risk-sharing rule s differs

from the myopic sharing rule s(0). These predictions can then be compared with numerical

simulations. Second, it offers some insight into why s differs from s(0) in the way that it

does.

Proposition 10. Suppose that both U and u are CRRA. Then

s(0) =
R
y

R
y
+ r

1−y

and

s(1) =
1
2
Rr σ2 y2 (1− y)2

((1− y)R+ y r)5
(R− r)3

¡
(1− y)R+ y r − 2

¢
,

where y = W
W+w

is the Proposer’s share in aggregate wealth.

The main lessons that can be extracted from the formula for s(0) are as follows. First,

the myopic sharing rule s(0) is – modulo normalization by multiplying the numerator and

the denominator byW+w– the ratio of the Proposer’s absolute risk aversion, namely R
W
,

to the sum of the Proposer’s and the Responder’s absolute risk aversions, namely R
W
+ r

w
.

It is strictly decreasing in the Proposer’s wealth share y. When y = 0, the Proposer is

effectively infinitely risk averse, and s(0) = 1. When y = 1, the Responder is effectively

infinitely risk averse, and s(0) = 0.

Second, notice that s(0) is the proportion of the investment risk on total wealth that

the Responder bears. The proportion of the investment risk on his own wealth that he

bears is therefore
W + w

w
s(0) =

R

(1− y)R+ y r
,
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and his leverage is
R

(1− y)R+ y r
− 1 = y (R− r)

(1− y)R+ y r
.

If R > r then his leverage is 0 when y = 0, and rises to R−r
r

> 0 when y = 1. In particular,

his leverage is greater when his wealth is smaller. His leverage is 0 when y = 0 because

in that case he has all the wealth, and so risk sharing with the Proposer has a negligible

impact. It is increasing in y because – from his point of view – the opportunities for

risk sharing are increasing in y and, as the less risk averse party, taking advantage of these

opportunites means increasing his leverage. If R < r, then his leverage is 0 when y = 0

and falls to R−r
r

< 0 when y = 1. In particular, his leverage is smaller when his wealth is

smaller.

Third, if R = r, then s(0) = 1 − y and s(1) = 0. In other words, each party bears

precisely the risk on their own wealth, and their wealth shares therefore remain unchanged.

Turning to the formula for the dynamic correction s(1), we begin with a definition:

Definition 11. The Proposer is fairly risk tolerant if R < 2 and fairly risk averse if

R > 2. Similarly, the Responder is fairly risk tolerant if r < 2 and fairly risk averse if

r > 2.

We go on to note that s(1) is the product of three terms, namely

1
2
Rr σ2 y2 (1− y)2

((1− y)R+ y r)5
, (R− r)3, (1− y)R+ y r − 2.

The first of these is always positive; the second has the same sign as R− r; and the third

is affine in y. Hence, if we assume for concreteness that R > r, then we have three cases

to consider:

The Risk-Tolerant Case When both parties are fairly risk tolerant, i.e. 2 > R > r,

then (1 − y)R + y r − 2 < 0 for all y ∈ [0, 1]. Hence s(1) < 0 for all y ∈ (0, 1).
This suggests that s− s(0) < 0 for all y ∈ (0, 1), where s is the optimal risk-sharing
rule. In other words, irrespective of the distribution of wealth, it is optimal for the

Proposer to transfer less risk to the Responder than she would under the myopic

risk-sharing rule. The risk-tolerant case is illustrated in Figure 1(a).

The Risk-Averse Case When both parties are fairly risk averse, i.e. R > r > 2, then

(1−y)R+y r−2 > 0 for all y ∈ [0, 1]. Hence s(1) > 0 for all y ∈ (0, 1). This suggests
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that s− s(0) > 0 for all y ∈ (0, 1). In other words, irrespective of the distribution of
wealth, it is optimal for the Proposer to transfer more risk to the Responder than

she would under the myopic risk-sharing rule. The risk-averse case is illustrated in

Figure 1(b).

The Mixed Case When the Proposer is fairly risk averse and the Responder is fairly
risk tolerant, i.e. R > 2 > r, then (1 − y)R + y r − 2 > 0 for y ∈

£
0, R−2

R−r
¢
and

(1− y)R+ y r− 2 < 0 y ∈
¡
R−2
R−r , 1

¤
. This suggests that s− s(0) > 0 for y ∈

¡
0, R−2

R−r
¢

and s − s(0) < 0 for y ∈
¡
R−2
R−r , 1

¢
. In other words, when the Proposer has a small

share in total wealth, it is optimal for her to transfer more risk to the Responder

than she would under the myopic risk sharing rule; and, when she has a large share

in total wealth, it is optimal for her to transfer less risk to him than she would

under the myopic risk sharing rule. The mixed case is illustrated in Figure 1(c).

Figure 1 about here

The qualitative accuracy of these predictions can be demonstrated by plotting s−s(0),
where s is the (numerically computed) optimal contract.15 This is done in Figure 2.

Figure 2(a) shows s − s(0) in the risk-tolerant case. This figure is very similar to Figure

1(a). The main difference is quantitative: the minimum in Figure 2(a) is somewhat lower

than that in Figure 1(a). Figure 2(b) shows s− s(0) in the risk-averse case. This figure is

very similar to Figure 1(b). The main difference is again quantitative: the maximum in

Figure 2(b) is somewhat lower than that in Figure 1(b). Finally, Figure 2(c) shows s−s(0)

in the mixed case. This figure is similar to Figure 1(c) in that the graph first rises to a

positive maximum and then falls to a negative minimum. However, the balance between

the left-hand hump and the right-hand hump is slightly different.

Figure 2 about here

The predictions are best understood in terms of counterparty risk. Indeed, consider

the risk-tolerant case. Since r < 2, the Responder is willing to take on risk on relatively

unfavourable terms, and the Proposer must bear in mind the possibility that he will

eventually run out of wealth. This leads her to take on somewhat more risk than she

15See Section 13 below for more information on the numerically computed optimal contract.
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would under the myopic benchmark, thereby delaying the time at which the Responder

runs out of wealth. In effect, insurance is a scarce resource, and she chooses to husband it.

Now consider the mixed case. The Responder is still willing to take on risk on relatively

unfavourable terms, and the Proposer must still bear in mind the possibility that he

will eventually run out of wealth. However, in this case the Proposer is only willing to

take on the extra risk when she has a fairly large wealth share, i.e. when y > R−2
R−r .

When y < R−2
R−r , the cost of bearing additional risk outweighs the benefit of husbanding

insurance, and she transfers more risk to the Responder than she would under the myopic

benchmark. Loosely speaking, the stock of insurance is measured by 1− y, and should be

exploited when y < R−2
R−r and conserved when y > R−2

R−r . Finally, consider the risk-averse

case. Since r > 2, the Responder is only willing to take on risk on relatively favourable

terms. Transferring more risk to him therefore has the indirect effect of increasing the rate

of growth of his wealth and therefore the stock of insurance. The Proposer therefore does

not hesitate to transfer more risk to him than she would under the myopic benchmark.

Proof of Proposition 10. Put A = −VPP

VP
, a = −v00

v0 and θ = −VwP

VP
. Then

s =
A+ θ

A+ a

and
A(0) = R

W
, A(1) = − R

W 2 G+
R
W
GP −GPP ,

a(0) = r
w
, a(1) = 0,

θ(0) = 0, θ(1) = R
W
Gw −GwP ,

where

G = 1
2

(R− r)2 σ2

R
W
+ r

w

.

Hence, using the fact that θ(0) = a(1) = 0 and the fact that s(0) = A(0)

A(0)+a(0)
,

s(1)

s(0)
=

A(1) + θ(1)

A(0) + θ(0)
− A(1) + a(1)

A(0) + a(0)
=

A(1) + θ(1)

A(0)
− A(1)

A(0) + a(0)

=
¡
1− s(0)

¢ A(1)
A(0)

+
θ(1)

A(0)
.
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Now, using the formulae for A(0), A(1), θ(1) and G, we obtain

A(1)

A(0)
= −

1
2
r σ2 y (R− r)2 ((1− y)R+ y r − 2)

((1− y)R+ y r)3

and
θ(1)

A(0)
=

1
2
r σ2 y2 (R− r)2 ((1− y)R+ y r − 2)

((1− y)R+ y r)3
= −y A

(1)

A(0)
.

We therefore get

s(1) = s(0)
¡
1− s(0) − y

¢ A(1)
A(0)

=
(1− y)R

(1− y)R+ y r

µ
−y (1− y) (R− r)

(1− y)R+ y r

¶
A(1)

A(0)

=
1
2
Rr σ2 y2 (1− y)2 (R− r)3 ((1− y)R+ y r − 2)

((1− y)R+ y r)5
,

as required.

10.4. Dynamic Terms: b(1). In this section we determine the dynamic correction b(1)

to the myopic termination payment b(0). Since b(0) = 0, this correction leads directly to

qualitative predictions about the optimal termination payment b. The principal prediction

is that the sign of b will depend on whether the investment opportunity is good or bad,

in the sense that the ratio 2μ
σ2
is high or low relative to the other parameters of the model.

For example, suppose that R > r. In this case, if the value of the investment opportunity

is high, then we should have b < 0. In other words, the Responder should compensate the

Proposer for the loss of the valuable investment opportunity when termination occurs.

On the other hand, if the value of the investment opportunity is low, then we should

have b > 0. In other words, the Responder should compensate the Proposer for the losses

that she faces while the investment is ongoing, and receives in return a payment from the

Proposer when the good state (namely termination) is reached.

There is, however, an important twist to the story: for intermediate values of the ratio
2μ
σ2
, the sign of b should depend on the Proposer’s wealth share y. In the risk-tolerant case,

we predict that b will be positive for small y and negative for large y. In the risk-averse

case, we predict that b will be negative for small y and positive for large y. In the mixed

case, the picture is more involved. However, the most interesting possibility is that in
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which b will be negative for y near 0 or 1 but positive for intermediate values of y.

Proposition 12. Suppose that both U and u are CRRA. Then

b(0) = 0

and

b(1) =
y (1− y)

(1− y)R+ y r
(R− r)

¡
1
2
σ2B(y)− μ

¢
,

where

B(y) = r
(R− r)2 y2 − 3R (R− r) y +R (2R− 1)

((1− y)R+ y r)2

and y = W
W+w

is the Proposer’s share in aggregate wealth.

Now, b(1) is the product of three terms, namely

y (1− y)

(1− y)R+ y r
, R− r, 1

2
σ2B(y)− μ.

The first of these is always positive; the second has the same sign as R− r; and the third

is linear in the core parameters μ and σ2, but depends in an apparently complicated way

on y. Fortunately, this complexity is more apparent than real: if we differentiate B with

respect to y, then we obtain a formula that is highly reminiscent of the formula for s(1),

namely

B0(y) =
Rr (R− r)

((1− y)R+ y r)3
((1− y)R+ y r − 2).

Assuming for concreteness that R > r, we therefore arrive at the three same cases that

we encountered in the context of our discussion of s(1), namely:

The Risk-Tolerant Case If 2 > R > r, then we have B0 < 0 for all y ∈ [0, 1]. There
are therefore three subcases to consider, namely

2μ
σ2

< B(1), 2μ
σ2
∈ (B(1), B(0)), 2μ

σ2
> B(0).

In the first subcase, b(1) > 0 for all y ∈ (0, 1); in the second, there exists y ∈ (0, 1)
such that b(1) > 0 for y ∈ (0, y) and b(1) < 0 for y ∈ (y, 1); in the third, b(1) < 0 for
all y ∈ (0, 1). This case is illustrated in Figure 3(a).
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The Risk-Averse Case If R > r > 2, then we have B0 > 0 for all y ∈ [0, 1]. There are
therefore again three subcases to consider, namely

2μ
σ2

< B(0), 2μ
σ2
∈ (B(0), B(1)), 2μ

σ2
> B(1).

In the first subcase, b(1) > 0 for all y ∈ (0, 1); in the second, there exists y ∈ (0, 1)
such that b(1) < 0 for y ∈ (0, y) and b(1) > 0 for y ∈ (y, 1); in the third, b(1) < 0 for
all y ∈ (0, 1). This case is illustrated in Figure 3(b).

The Mixed Case If R > 2 > r, then B is inverse-U shaped: B0 > 0 for y ∈
£
0, R−2

R−r
¢

and B0 < 0 for y ∈
¡
R−2
R−r , 0

¤
. Putting

B = max{B(y) | y ∈ [0, 1]} = 1
4
r (4 +R),

there are therefore four subcases to consider, namely

2μ
σ2

< min{B(0), B(1)}, 2μ
σ2
∈ (min{B(0), B(1)},max{B(0), B(1)}) ,

2μ
σ2
∈
¡
max{B(0), B(1)}, B

¢
, 2μ

σ2
> B.

This case is illustrated in Figure 3(c).16

Figure 3 about here

Since b(0) = 0, these observations concerning b(1) translate directly into predictions

about the optimal termination payment b. These predictions are remarkable at three

levels. First, they are qualitatively correct: every case and subcase described above

occurs. Second, they are quantitatively correct in the sense that they even predict the

parameter values for which the various cases will occur. For example, if we are looking for

the third subcase of the mixed case, which involves b(1) < 0 near the ends of the interval

(0, 1) but b(1) > 0 in the middle, then we should choose

2μ
σ2
∈
³
max

n
(2R−1) r

R
, r

2−R+Rr
r

o
, (R+4) r

4

´
.

16The second subcase of the mixed case divides into two subsubcases depending on whether B(0) < B(1)
or B(0) > B(1). In this connection, it is worth noting that B(0) < B(1) iff the harmonic mean of R
and r exceeds 2. This is another instance where the outcome depends on whether mean risk aversion lies
above or below 2.
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Third, they are correct for values of β as low as 0.05, even though the expansions are

theoretically valid only for large β.17

Proof of Proposition 12. The first-order condition for b, namely (26), takes the

form
U 0(W − (W + w) b)

u0(w + (W + w) b)
=

VP
v0
.

Hence, using logarithmic differentiation and taking advantage of the fact that b(0) = 0,

−(W + w)U 00(W ) b(1)

U 0(W )
− (W + w)u00(w) b(1)

u0(w)
=

V
(1)
P

V
(0)
P

− (v
(1))0

(v(0))0
.

Now
V
(0)
P = U 0(W ), V

(1)
P =

¡
− R

W
(I +G) + (I +G)P

¢
U 0(W ),

v
(0)
w = u0(w), v

(1)
w =

¡
− r

w
i+ iw

¢
u0(w),

where

I = (μ− 1
2
Rσ2)W, i = (μ− 1

2
r σ2)w and G = 1

2

(R− r)2 σ2

R
W
+ r

w

denote the investment return of the Proposer, the investment return of the Responder

and the monetary value of the gains from trade respectively. Hence

(W + w)

µ
R

W
+

r

w

¶
b(1) =

µ
− R

W
(I +G) + (I +G)P

¶
−
³
− r

w
i+ iw

´
or

(W + w) b(1) = −s(0)
¡
(I +G)− W

R
(I +G)P

¢
+
¡
1− s(0)

¢ ¡
i− w

r
iw
¢
.

In other words, when termination occurs: the Responder pays the Proposer a fraction

s(0) of the total loss I + G to the Proposer from termination; and the Proposer pays

the Responder a fraction 1 − s(0) of the total loss i to the Responder from termination.

These payments are, however, offset by terms reflecting the opportunity cost of buying

the termination insurance ex ante. Finally, substituting for I, i and G and collecting

17The three parameters β, μ and σ2 are not independent of one another: one of them can be scaled
out of the problem. For the present purposes, it is convenient to scale out σ2. In this way we arrive at
the dimensionless parameter ε = σ2

β . Our asymptotic expansions are premised on the assumption that
this parameter is small. In all of the three baseline parameter constellations used in Section 13 below,
we have σ2 = 0.0225 and therefore ε = 0.45. This is still less than 1, and cannot therefore be considered
to be exceptionally large.
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terms in μ and σ2 yields the required formula for b(1).

11. The One-dimensional Bellman Equation

Asymptotic expansions in 1
β
have yielded approximations for the optimal risk-sharing rule

and the optimal termination payment when β is large. Do these approximations tell us

most of what we want to know about the general case, or do new phenomena arise when β

is not necessarily large? To answer this question, we need to compute numerical solutions

for the Bellman equation and the optimal contract, and to compare these solutions with

the approximations. In this section we undertake some of the preparatory analytical work

that is needed before we can turn to the numerical simulations themselves. This involves

two main steps: (i) we reduce the Bellman equation from a partial differential equation in

(W,w)-space to a pair of ordinary differential equations in y-space; (ii) we normalize the

value function with respect to the wealth share of both the Proposer and the Responder.

In the process, we arrive at some new analytical insights. For example, we obtain a proof

of the intuitively reasonable result that the Responder takes on more that his share in

the total investment risk when r < R, and less than his share when r > R.18 Or again,

we obtain a much more concrete formula for s.19 Nonetheless, the reader who is anxious

to see the numerical results – and how they compare with the approximations – may

wish to skip the remainder of this section, review Conditions III and IV in Section 12,

and then proceed to Section 13.

11.1. SomeNormalizations. Since both the Proposer and the Responder have CRRA

utility, and since the returns to their investment follow a geometric Brownian motion, it

is natural to look for a solution to the reduced Bellman equation of the Proposer in the

form

V (W,w) = CR(ρ(y)W ),

where ρ is the Proposer’s certainty-equivalent rate of return and y = W
W+w

is the Proposer’s

share in total wealth. However, as in the Responder’s problem under autarky, we have

CR(ρ(y)W ) = CR(W ) +W C 0
R(W )CR(ρ(y)),

18See Corollary 17 below.
19Compare equation (25) above, which gives the formula for the general case in which U and u are

not necessarily CRRA, with equation (39) below, which gives the formula obtained in the special case in
which U and u are CRRA.
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and it turns out to be more convenient to work in terms of

ψ(y) = CR(ρ(y)),

which we call the normalized value function of the Proposer. It is also useful to note that

VP (W,w) = γ(y)C 0
R(W ),

where

γ(y) = 1 + (1−R)ψ(y) + y ψ0(y)

is what we call the normalized marginal value of transfers of the Proposer.

We take the following proposition to be economically obvious:

Proposition 13. γ > 0. ¥

Next, we shall need an appropriate normalization of ψ. To this end, we consider

the Proposer’s problem under autarky. By analogy with the Responder’s problem under

autarky, we see at once that the Proposer’s value function under autarky takes the form

CR(W ) +W C 0
R(W )ψR, where

ψR =
μ− 1

2
Rσ2

βR

and

βR = β − (1−R) (μ− 1
2
Rσ2).

Moreover her marginal value of wealth under autarky takes the form γRC
0
R(W ), where

γR =
β

βR
.

The required normalization of ψ is then

χ(y) =
ψ(y)− ψR

(1− y) γR
.

The motivation for looking at the difference ψ(y) − ψR should be clear: we want to see

what the Proposer gains by sharing risk with the Responder. The motivation for dividing

through by 1 − y is that the gain from trade is necessarily small when y is near 0 or 1,

and we would like to measure the gain from trade relative to the wealth of the poorer
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of the two parties. Now, the initial normalization that we made in moving from V to ψ

took care of the possibility that the Proposer might have little wealth. So it remains only

to take care of the possibility that the Responder might have little wealth. This explains

the presence of the factor 1− y in the denominator. The factor γR serves to simplify the

algebra which follows.

It is also convenient to introduce analogous normalizations for the contracting variables

s and b, namely

z =
s− (1− y)

y (1− y)
and g =

b

y (1− y)
.

From an economic perspective, z is simply the ratio of the Responder’s leverage to the

Principal’s share in total wealth. Indeed, the total investment risk borne by the Responder

is s (W + w), and his leverage is therefore

s (W + w)− w

w
=

s− (1− y)

1− y
.

From a mathematical perspective, notice that the Responder takes on a share in the total

investment risk different from his autarky share, namely 1 − y. This difference will be

small when y is near 0, since then the Responder has to bear almost all the risk (because

he owns almost all the wealth). It will also be small when y is near 1, since then the

Responder bears almost none of the risk (because he owns almost none of the wealth).

Dividing through by y (1−y) therefore normalizes the departure of the Responder’s share
under bilateral contracting from his share under autarky. Similarly, the proportion b of

total wealth transferred between the two parties in the event of termination is small when

y is near 0 or 1. It is therefore helpful to normalize b so that it is measured relative to

the Proposer’s wealth when y is near 0 and the Responder’s wealth when y is near 1.

Finally, recall that the gross benefit from sharing termination risk is captured by the

term

β

µ
U(W − (W + w) b)− V +

VP
v0
(u(w + (W + w) b)− v)

¶
in the reduced Bellman equation of the Proposer (namely (23)). Taking advantage of the

fact that V = CR(ρW ), v = Cr(ρr w), VP = γ C 0
R(W ) and v0 = γr C

0
r(w), this term can

be rewritten in the form

β (W + w)C 0
R(W ) y (1− y)

µ
Φ(g, y, γ)− ψ

1− y
− γ

γr

ψr

y

¶
,
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where the function Φ is defined in two steps. The first step is to put

Φ(g, y, γ) =
CR(1− (1− y) g)

1− y
+

γ

γr

Cr(1 + y g)

y

for all (y, γ) ∈ (0, 1) × (0,∞) and all g ∈ (−y−1, (1 − y)−1). However, since CR(1) =

Cr(1) = 0 and C 0
R(1) = C 0

r(1) = 1, Φ extends continuously to include the case (g, y, γ) ∈
(−∞, 1)× {0} × (0,∞) by means of the formula

Φ(g, 0, γ) = CR(1− g) +
γ

γr
g,

and to include the case (g, y, γ) ∈ (−1,∞)× {1} × (0,∞) by means of the formula

Φ(g, 1, γ) = −g + γ

γr
Cr(1 + g).

We shall also need the function φ given by the formula

φ(y, γ) = max
g∈(−y−1,(1−y)−1)

{Φ(g, y, γ)} .

for all (y, γ) ∈ (0, 1)× (0,∞), and by the formulae

φ(0, γ) = max
g∈(−∞,1)

{Φ(g, 0, γ)} and φ(1, γ) = max
g∈(−1,∞)

{Φ(g, 0, γ)}

for all γ ∈ (0,∞).
We shall refer to χ as the normalized gain from trade and to φ as the normalized gain

from sharing termination risk. Also, since the overall gain from trade is made up of the

gain from sharing termination risk and the gain from sharing investment risk, we refer to

χ− φ as the normalized gain from sharing investment risk.

11.2. A Pair of One-Dimensional Equations. We are now in a position to take the

first major step in the derivation of the one-dimensional version of the reduced Bellman

equation of the Proposer:

Proposition 14. The reduced Bellman equation of the Proposer, namely equation (23),
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can be written equivalently as a pair of one-dimensional equations for γ and χ, namely

0 = max
(z,g)∈R×(−y−1,(1−y)−1)

(
β

γ σ2
(Φ(g, y, γ)− χ)

+ (R− r) z − 1
2

µ
(1− y)R+ y r − y (1− y) γ0

γ

¶
z2

)
(29)

and

y (1− y)χ0 =
γ − γR
γR

− ((1−R)− (2−R) y)χ, (30)

where we have suppressed the dependence of γ and χ on y.

Notice that choosing g reduces to maximizing Φ(g, y, γ) with respect to g, and that

choosing z reduces to maximizing

(R− r) z − 1
2

µ
(1− y)R+ y r − y (1− y) γ0

γ

¶
z2 (31)

with respect to z. Also, the maximand (31) for z involves two terms: a linear incentive

and a quadratic penalty. The linear incentive is simply R− r: the more the risk aversion

of the Proposer exceeds that of the Responder, the greater will be the Responder’s nor-

malized leverage z. The quadratic penalty is (the multiplicative factor W+w
W w

aside) total

endogenous risk aversion.20 It is this which puts a brake on leverage.

20The endogenous absolute risk aversion of the Proposer is −VPP
VP

and the endogenous absolute risk

aversion of the Responder is −v00

v0 . Hence total endogenous risk aversion is

−VPP
VP
− v00

v0
=

W + w

W w

µ
(1− y)R+ y r − y (1− y) γ0

γ

¶
.

Cf. Section 11.3 below. Proposition 15 below shows that this is strictly positive.
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Proof. Elementary calculations show that

VW = (γ − y (γ − 1− (1−R)ψ))C 0
R(W ),

VP = γ C 0
R(W ),

VWW =

µ
(1− y)2 γ0 − R

y
γ +Ry (γ − 1− (1−R)ψ)

¶
C 0
R(W )

W + w
,

VWP =

µ
(1− y) γ0 − R

y
γ

¶
C 0
R(W )

W + w
,

VPP =

µ
γ0 − R

y
γ

¶
C 0
R(W )

W + w
.

Moreover

U(W − (W + w) b)− V

(W + w)C 0
R(W )

=
W

W + w

CR(W − (W + w) b)− CR(ρW )

W C 0
R(W )

=
W

W + w

µ
CR

µ
1− W + w

W
b

¶
− CR(ρ)

¶
= y (CR(1− (1− y) g)− ψ)

and

VP
v0

u(w + b (W + w))− v

(W + w)C 0
R(W )

=
γ C 0

R(W )

γr C
0
r(w)

Cr(w + (W + w) b)− Cr(ρr w)

(W + w)C 0
R(W )

=
γ

γr

w

W + w

Cr(w + (W + w) b)− Cr(ρr w)

wC 0
r(w)

=
γ

γr

w

W + w

µ
Cr

µ
1 +

W + w

w
b

¶
− Cr(ρr)

¶
=

γ

γr
(1− y) (Cr(1 + y g)− ψr) .

Substituting into equation (23), dividing through by (W + w)C 0
R(W ), taking advantage

of the notation Φ, putting s = (1− y) (1 + y z), collecting terms in β, z and z2, dividing

through by γ σ2 y (1− y) and rearranging therefore yields equation (29). Finally, we have

γ = 1 + (1−R)ψ + y ψ0

and

ψ = ψR + (1− y) γR χ.
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Differentiating the latter equation to get ψ0 in terms of χ0, substituting in the former

equation and rearranging, we obtain equation (30).

Next we establish that total endogenous risk aversion, and therefore the quadratic

penalty on leverage, is strictly positive. The proof proceeds in two steps. The first step

shows that total endogenous risk aversion must be non-negative, because otherwise the

two parties would use the Wiener noise to construct bets, and thus arbitrage away the

infinite gains from trade implicit in strictly negative total risk aversion.

Proposition 15. Suppose that R 6= r. Then (1− y)R+ y r − y (1−y) γ0
γ

> 0.

Proof. Since the maximand in equation (29) is additively separable in g and z,

equation (29) can be written equivalently as

0 = max
z∈R

(
− β

γ σ2
(χ− φ) + (R− r) z − 1

2

µ
(1− y)R+ y r − y (1− y) γ0

γ

¶
z2

)
. (32)

However, as it stands, this equation is not fully precise: z can take any real value, and

therefore the coefficients of the equation are unbounded. To obtain a precise version of

the equation, we need to normalize by dividing through by 1+z2.21 Cf. Krylov [9]. Doing

so yields

0 = sup
z∈R

(
− β

γ σ2
(χ− φ)

1

1 + z2
+ (R− r)

z

1 + z2

− 1
2

µ
(1− y)R+ y r − y (1− y) γ0

γ

¶
z2

1 + z2

)
.

In particular, the objective must be non-positive for all z ∈ R. Letting z →∞ therefore

yields

−1
2

µ
(1− y)R+ y r − y (1− y) γ0

γ

¶
≤ 0.

21Note that the normalization should in principle be applied consistently throughout the paper. How-
ever, we have suppressed it for expositional convenience. We make it explicit here since this is the one
place where it plays an important role.
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It therefore remains only to show that this inequality cannot hold as an equality. Suppose

for a contradiction that (1− y)R+ y r − y (1−y) γ0
γ

= 0. Then we must have

1

1 + z2

µ
− β

γ σ2
(χ− φ) + (R− r) z

¶
≤ 0

for all z ∈ R. Moreover, since R 6= r, the expression in parentheses is a non-constant

affine function of z. It must therefore be strictly positive for some choice of z. This is the

required contradiction.

Proposition 16. The reduced Bellman equation of the Proposer, namely equation (23),
can be written equivalently as a pair of one-dimensional equations for γ and χ, namely

y (1− y) γ0 =

µ
(1− y)R+ y r −

1
2
(R− r)2 σ2 γ

β (χ− φ)

¶
γ (33)

and

y (1− y)χ0 =
γ − γR
γR

− ((1−R)− (2−R) y)χ. (34)

Moreover the optimal risk-sharing rule takes the form

s = (1− y)

µ
1 + y

β (χ− φ)
1
2
(R− r)σ2 γ

¶
. (35)

We refer to the pair of equations (33-34) as the one-dimensional Bellman equation of

the Proposer.

Proof. Rearranging (32), we obtain

β

γ σ2
(χ− φ) = max

z∈R

½
(R− r) z − 1

2

µ
(1− y)R+ y r − y (1− y) γ0

γ

¶
z2
¾
. (36)

The maximum is attained when the control variable

z =
R− r

(1− y)R+ y r − y (1−y) γ0
γ

, (37)

and the maximum is
1
2
(R− r)2

(1− y)R+ y r − y (1−y) γ0
γ

.
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Hence
β

γ σ2
(χ− φ) =

1
2
(R− r)2

(1− y)R+ y r − y (1−y) γ0
γ

. (38)

In particular, since R 6= r and (1− y)R+ y r − y (1−y) γ0
γ

> 0, we have χ− φ > 0.

Now, rearranging (38) yields (33). Rearranging (38) also yields

(1− y)R+ y r − y (1− y) γ0

γ
=

1
2
(R− r)2 σ2 γ

β (χ− φ)
.

Substituting for the denominator of the RHS of (37) therefore gives

z =
β (χ− φ)

1
2
(R− r)σ2 γ

.

Hence, noting that s = (1− y) (1+ y z), we obtain (35). Finally, (34) is the same as (30).

One simple but important implication of the expression (31) for the Proposer’s objec-

tive is that: if R > r, then we will have z > 0 for all y ∈ [0, 1] (i.e. the Responder takes
on more than his autarky share of the risk); and, if R < r, then we will have z < 0 for

all y ∈ [0, 1] (i.e. the Responder takes on less than his autarky share of the risk). We
formalize this observation in the following Corollary.

Corollary 17.

1. If R > r then s > 1− y for all y ∈ (0, 1).

2. If R < r then s < 1− y for all y ∈ (0, 1). ¥

The proof of Proposition 16 also establishes that the normalized gain from sharing in-

vestment risk is strictly positive. Combining this with the fact that φ(y, γ) ≥ Φ(0, y, γ) =

0, we obtain a second Corollary:

Corollary 18. Suppose that R 6= r. Then χ > φ ≥ 0. ¥

Notice that φ = 0 iff g = 0. Moreover, on the basis of the asymptotic expansions given

in Section 10 above, we would expect that g will indeed take the value 0 for some choices

of the parameter values.22 This is confirmed by Figure 7 below.

22Specifically, it would be expected to happen for intermediate values of the ratio 2μ
σ2 .
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11.3. Revisiting the General Formula for s. The changes of variable made in this

section also shed light on the general formula for s given in Section 9, namely

s =
−VPP

VP
− VwP

VP

−VPP
VP
− v00

v0

.

Indeed, using the formulae given in the proof of Proposition 14, we obtain

−VPP
VP

=
1

W + w

µ
R

y
− γ0

γ

¶
and

−VwP
VP

= −VWP − VPP
VP

=
1

W + w
y
γ0

γ
.

Moreover

−v
00

v0
=

r

w
=

1

W + w

r

1− y
.

Hence

s =

³
R
y
− γ0

γ

´
+ y γ0

γ³
R
y
− γ0

γ

´
+ r

1−y

. (39)

In particular, if γ
0

γ
> 0, then there are two effects. First, the endogenous risk aversion−VPP

VP

of the Proposer is lower than her exogenous risk aversion−U 00

U 0 . Second, the elasticity−
VwP
VP

of the shadow value of transfers VP with respect to changes in the Responder’s wealth w is

strictly positive. The first effect tends to lower the Responder’s share in investment risk:

the Proposer can afford to take on more risk because, if she receives a negative shock,

then this is partially offset by a reduction in the opportunity cost of obtaining insurance;

and, if she receives a positive shock, then this is partially offset by an increase in the

opportunity cost of obtaining insurance. The second effect tends to raise the Responder’s

share in investment risk: obtaining more insurance from the Responder tends to increase

the Responder’s wealth, and increasing the Responder’s wealth decreases the Proposer’s

opportunity cost of obtaining insurance.

It turns out that the second effect always outweighs the first. Indeed, we have

s− s(0) =
(R− r) γ

0

γ³
R
y
+ r

1−y

´³
R
y
+ r

1−y −
γ0

γ

´ .
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Moreover Proposition 15 tells us that R
y
+ r

1−y −
γ0

γ
> 0. Hence:

Proposition 19. Suppose that R > r. Then s− s(0) > 0 iff γ0 > 0. ¥

In other words, the Responder takes on more risk under the optimal risk-sharing

rule than he would under the myopic benchmark iff the shadow value of transfers γ is

decreasing in the Responder’s share in total wealth.

12. The Case of Large Wealth

One of the advantages of the one-dimensional Bellman equation derived in the previous

section is that it allows us to investigate what happens when the wealth of one party

becomes very large relative to the wealth of the other. We can understand what happens

when w → ∞ by examining the limit of the solution of the one-dimensional Bellman

equation as y → 0, and what happens when W → ∞ by examining the limit of the

solution of the one-dimensional Bellman equation as y → 1. In this section, we formulate

sufficient conditions under which the relevant limits exist. These conditions are also

sufficient conditions for the existence of an optimal constract.

It is natural to begin by requiring that both parties have finite payoffs under autarky.

Indeed, from a risk-sharing perspective, the Responder is effectively on his own when

y = 0, and the Proposer is effectively on her own when y = 1. This is what Conditions

I and II ensure. However, when y ∈ (0, 1), there is a gain from risk sharing. Moreover,

when normalized with respect to the wealth of the Responder, this gain will be largest

when y = 1; and, when normalized for the wealth of the Proposer, it will be largest when

y = 0. In order to ensure that the normalized gain from risk sharing does not become

infinite, it therefore suffices to ensure that it is finite when y = 1 and y = 0.

Putting y = 1 in equation (33) and rearranging yields

χ(1)− φ(1, γ(1)) =
1
2
(R− r)2 σ2

r β
γ(1). (40)

Similarly, putting y = 1 in equation (34) and rearranging yields

χ(1) =
γR − γ(1)

γR
. (41)

We also have

φ(1, γ(1)) = max
g∈(−1,∞)

½
−g + γ(1)

γr
Cr(1 + g)

¾
. (42)
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Now, if we denote the maximizer in equation (42) by g(1), then the first-order condition

yields
γ(1)

γr
C 0
r(1 + g(1)) = 1, (43)

and equation (42) itself becomes

φ(1, γ(1)) = −g(1) + γ(1)

γr
Cr(1 + g(1)).

Hence

γ(1)

γr
+ (1− r)φ(1, γ(1)) =

γ(1)

γr

µ
1 + (1− r)Cr(1 + g(1))

¶
− (1− r) g(1)

=
γ(1)

γr
(1 + g(1))C 0

r(1 + g(1))− (1− r) g(1)

= (1 + g(1))− (1− r) g(1)

= 1 + r g(1). (44)

Next, note that the three equations (40), (41) and (44) are linear in the three unknowns

χ(1), φ(1, γ(1)) and g(1). Solving them yields

r

γ(1)
(1 + g(1)) =

1

γr
− (1− r)

µ
1

γR
+ 1

2

(R− r)2 σ2

r β

¶
. (45)

Now, 1 + g(1) must be in the domain of the function Cr, i.e. we must have 1 + g(1) > 0.

The right-hand side of equation (45) must therefore also be strictly positive. Putting

γR =
β
βR
, γr =

β
βr
and βr = β − (1− r) (μ − 1

2
r σ2), and rearranging, shows that this is

the case iff:

Condition III. β > (1− r)
³
μ− 1

2
r σ2 + 1

2
(R−r)2 σ2

r
+ βR

´
.

The best way to understand Condition III is to compare it with Condition I. Condition

I requires that the rate of discounting β must exceed the rate of growth of the Responder’s

utility when his wealth grows at the risk-adjusted rate of return μ − 1
2
r σ2, whereas

Condition III requires that the rate of discounting β must exceed the rate of growth of

utility when wealth grows at the higher rate μ− 1
2
r σ2+ 1

2
(R−r)2σ2

r
+βR. The latter rate is

composed of three terms: the certainty-equivalent rate of return derived from investment,
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namely μ− 1
2
r σ2, the certainty-equivalent rate of return deriving from sharing investment

risk, namely 1
2
(R−r)2σ2

r
, and the certainty-equivalent rate of return deriving from sharing

termination risk, namely βR.
23 Moreover Condition II requires precisely that βR > 0.

Hence, assuming that Condition II holds, Condition III is stronger than Condition I when

r < 1: the Responder’s utility function is unbounded above, and his certainty-equivalent

rate of return is larger, so we need more discounting if his expected payoff is to be finite.

Similarly, again assuming that Condition II holds, Condition I is stronger than Condition

III when r > 1: the Responder’s utility function is unbounded below, and his certainty-

equivalent rate of return is larger, so we now need less discounting than before in order

to ensure that his expected payoff is finite.

We also need the corresponding condition derived from the case y = 0. Proceeding

analogously to the case y = 1, we obtain the four equations

χ(0)− φ(0, γ(0)) =
1
2
(R− r)2 σ2

Rβ
γ(0), (46)

(1−R)χ(0) =
γ(0)− γR

γR
, (47)

C 0
R(1− g(0)) =

γ(0)

γr
, (48)

1 + (1−R)φ(0, γ(0)) = (1−Rg(0))
γ(0)

γr
. (49)

Now, if R 6= 1, then we can solve the three equations (46), (47) and (49) for the three

unknowns χ(0), φ(0, γ(0)) and g(0). Doing so yields

R

γr
(1− g(0)) =

1

γR
− (1−R)

µ
1

γr
+ 1

2

(R− r)2 σ2

Rβ

¶
. (50)

23According to Proposition 9, the investment return on the Responder’s wealth and the monetary value
of the gains from sharing investment risk are

(μ− 1
2 r σ

2)w and 1
2

(R− r)2 σ2

R
W + r

w

.

Normalizing these expressions with respect to the Responder’s wealth, i.e. dividing through by w, yields

μ− 1
2 r σ

2 and 1
2

(R− r)2 σ2 y

(1− y)R+ y r
.

Putting y = 1 then yields the first two expressions in the text.
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Similarly, if R = 1, then one can solve the two equations (47) and (48) for the two

unknowns γ(0) and g(0). Doing so yields the appropriate special case of (50). Finally,

putting γR =
β
βR
, γr =

β
βr
and βR = β − (1−R) (μ− 1

2
Rσ2) in (50) and rearranging, we

find that 1− g(0) > 0 iff

Condition IV. β > (1−R)
³
μ− 1

2
Rσ2 + 1

2
(R−r)2σ2

R
+ βr

´
.

Condition IV is completely analogous to Condition III. In particular, assuming that

Condition I holds, Condition IV is stronger than Condition II when R < 1, and Condition

II is stronger than Condition IV when R > 1. Furthermore, it can be shown that, in the

case in which both R < 1 and r < 1, Conditions III and IV together imply Conditions I

and II. The discussion of the present section can therefore be summarized as follows.

Proposition 20. A sufficient condition for the one-dimensional Bellman equation of the
Proposer, namely (33-34), to have a solution that is continuous on [0, 1] is that both of

the following conditions hold:

β >

(
(1−R)

³
μ− 1

2
Rσ2 + 1

2
(R−r)2σ2

R
+ βr

´
if R ≤ 1

(1−R)
¡
μ− 1

2
Rσ2

¢
if R ≥ 1

)

and

β >

(
(1− r)

³
μ− 1

2
r σ2 + 1

2
(R−r)2σ2

r
+ βR

´
if r ≤ 1

(1− r)
¡
μ− 1

2
r σ2

¢
if r ≥ 1

)
.

In particular, these conditions are sufficient for the existence of an optimal contract. ¥

Remark 21. If one is interested primarily in the original problem, in which W > 0 and

w > 0, but not in the extended problem, in which the solution of the one-dimensional

Bellman equation of the Proposer is required to be continuous right up to the boundary,

then Conditions I and II should probably still be regarded as minimal conditions: they

ensure that the outside options of both parties are well defined. However, it may be

possible to weaken Conditions III and IV: if the Proposer’s normalized value diverges as

y → 0, then this may be offset by the fact that her wealthW → 0; and, if the Responder’s

normalized value diverges as y → 1, then this may be offset by the fact that his wealth

w→ 0. Investigating this possibility is, however, beyond the scope of the current paper.
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13. Numerical Solutions

In this section we solve the system (33-34) numerically, and use these solutions to compute

the optimal contract. The numerical solutions are obtained using the MatLab program

bvp4c.

The most striking feature of the numerical solutions is the degree to which they con-

form to the predictions of the asymptotic expansions. The first prediction is quantitative:

there should be three main cases, namely the risk-tolerant case (2 > R > r), the risk-

averse case (R > r > 2) and the mixed case (R > 2 > r). The second set of predictions

is qualitative:

1. in the risk-tolerant case, we should have s− s(0) < 0 for all y;

2. in the risk-averse case, we should have s− s(0) > 0 for all y;

3. in the mixed case we should have s− s(0) > 0 for low y and s− s(0) < 0 for high y.

The third set of predictions is again quantitative. PuttingB(0) = 2 r− r
R
, B(1) = R+r−R

r

and B = 1
4
r (4 +R):

1. in the risk-tolerant case, we should have b > 0 for all y if 2μ
σ2

< B(1); b > 0 for low

y and b < 0 for high y if 2μ
σ2
∈ (B(1), B(0)); b < 0 for all y if 2μ

σ2
> B(0).

2. in the risk-averse case, we should have b > 0 for all y if 2μ
σ2

< B(0); b < 0 for low y

and b > 0 for high y if 2μ
σ2
∈ (B(0), B(1)); b < 0 for all y if 2μ

σ2
> B(1).

3. in the mixed case we should have b > 0 for all y if 2μ
σ2

< min{B(0), B(1)}; b < 0 for
low y, b > 0 for intermediate y and b < 0 for high y if 2μ

σ2
∈
¡
max{B(0), B(1)}, B

¢
;

b < 0 for all y if 2μ
σ2

> B.24

These predictions are borne out by all the simulations presented here and by numerous

unreported simulations. Moreover it seems likely that the first prediction and the second

set of predictions taken together are in fact a theorem.

24We omit the subcase in which 2μ
σ2 ∈ (min{B(0), B(1)},max{B(0), B(1)}) since it divides into two

subsubcases depending on whether B(0) < B(1) or B(0) > B(1).
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In this section we shall focus mainly on three baseline parameter constellations:

Case R r μ σ β

Risk-Tolerant 1 0.5 0.025 0.15 0.05

Risk-Averse 10 2.5 0.12 0.15 0.05

Mixed 8 1.3 0.10 0.15 0.05

In all three cases: σ = 0.15, which is in line with estimates of the volatility of the US

stock market: and β = 0.05, which is loosely calibrated on estimates of subjective discount

rates. The coefficients of relative risk aversion R and r are then chosen – from within the

range that has been found in empirical studies – to balance two competing objectives:

on the one hand, we do not want the dynamic effects to be swamped by the myopic

effects; but, on the other, we want our simulations to be completely stable.25 The final

parameter μ is then chosen in such a way that Conditions I-IV are satisfied. For example,

in the risk-tolerant case, the cost of risk is low and μ must not be too large; and, in the

risk-averse case, the cost of risk is high and μ must not be too small.

For such a small value of β, we cannot expect our asymptotic expansions – which are

based on the assumption that β is large – to be quantitatively accurate in all respects.26

However, as we shall see, the qualitative predictions – and some of the quantitative

predictions – obtained from these expansions are remarkably accurate even though the

β we actually use is rather small.

We begin by noting that s(0)

1−y is the fraction of the investment risk on his own wealth

that the Responder bears under the myopic contract (and s(0)

1−y−1 is his leverage). Similarly,
s
1−y is the fraction of the investment risk on his own wealth that he bears under the optimal

contract (and s
1−y −1 is his leverage). Figure 4 plots

s(0)

1−y and
s
1−y as a function of y in the

three baseline cases. In all cases, both s(0)

1−y and
s
1−y increase from 1 to R

r
as y increases

from 0 to 1. They take the value 1 when y = 0, because in that case the Responder

has all the wealth, and so risk sharing with the Proposer has a negligible impact on his

leverage. They are increasing in y because – from the point of view of the Responder

– the opportunities for risk sharing are increasing in y and, as the less risk averse party,

taking advantage of these opportunites means increasing his leverage. Notice that the

leverage of the Responder can be quite substantial when y = 1: in the risk-tolerant case

25For examples of such studies, see Barsky, Juster, Kimball, and Shapiro (1997), Guiso and Paiella
(2008), Chiappori and Paiella (2008) and Paravisini, Rappoport and Ravina (2009).
26For further discussion of the magnitude of β, see footnote 17 above.
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he is 100% levered when y = 1; in the risk-averse case he is 300% levered; and in the

mixed case he is about 515% levered.

Figure 4 about here

The relationship between s(0)

1−y and
s
1−y is exactly as predicted by the dynamic correction

1
β

s(1)

1−y : in the risk-tolerant case, the Responder takes on less risk than he would under the

myopic benchmark, i.e. s
1−y < s(0)

1−y ; in the risk-averse case, the Responder takes on more

risk than he would under the myopic benchmark, i.e. s
1−y >

s(0)

1−y ; and, in the mixed case,

the Responder takes on more risk when his wealth is high and less risk when his wealth

is low, i.e. s
1−y >

s(0)

1−y when y is low and s
1−y <

s(0)

1−y when y is high.

The size of the difference s
1−y−

s(0)

1−y between the Responder’s leverage under the optimal

contract and his leverage under the myopic benchmark can be seen more clearly in Figure

5. In the risk-tolerant case, this difference troughs for y around 0.92, with a value of about

−0.07. At this point the myopic benchmark is around 1.85, so the difference is about
−3.7% of the benchmark. A somewhat larger effect (reflecting the greater difference in

risk aversion) is obtained for the risk-averse case: the difference peaks for y around 0.79,

with a value of about 0.13. At this point the myopic benchmark is around 2.44, so the

difference is about 5.5% of the benchmark. The largest effects are obtained for the mixed

case. In this case, the difference first peaks for y around 0.70, with a value of about 0.21,

and then troughs for y around 0.98, with a value of about −0.38. So, in the mixed case,
the extreme differences are about 8.7% and −6.7% of the benchmark respectively.

Figure 5 about here

Next, b
1−y is the fraction of the Responder’s wealth that the Proposer pays to the

Responder on termination. Figure 6 shows that, in all three of our baseline cases, this

fraction is 0 when y = 0 and decreases as y increases from 0 to 1. It is zero at y = 0

because the Responder has all the wealth, and any payment from the Proposer to the

Responder is therefore negligible relative to the Responder’s wealth. It is negative for

y > 0 because the investment opportunity is valuable, and it is therefore the Responder

who compensates the Proposer when it terminates. What is perhaps most striking is the

sheer size of the payments made by the Responder: in the risk-tolerant case, he pays out

about 62% of his wealth when y = 1; in the risk-averse case, he pays out about 26%;
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and in the mixed case, he pays out almost 94%.27 The magnitude of these payments

underlines the importance of sharing termination risk.

Figure 6 about here

Finally, the asymptotic expansions for b
1−y suggest that it will not always be the case

that b
1−y < 0 or that b

1−y is decreasing. In fact, those expansions make a number of

predictions to which we turn in our final figure. For example, in the risk-tolerant case,

we have 1
2
σ2B(0) ≈ 0.0056 and 1

2
σ2B(1) ≈ −0.0056. Hence, assuming that we keep

σ = 0.15, we expect to have:

1. b
1−y > 0 for all y ∈ (0, 1) iff μ < −0.0056;

2. b
1−y > 0 for low y and b

1−y < 0 for high y iff μ ∈ (−0.0056, 0.0056);

3. b
1−y < 0 for all y ∈ (0, 1) iff μ > 0.0056.

Figure 7(a), which plots b
1−y for μ ∈ {−0.01, 0, 0.01}, is consistent with these predictions.

In the risk-averse case, we have 1
2
σ2B(0) ≈ 0.053 and 1

2
σ2B(1) ≈ 0.096. Hence we

expect to have:

1. b
1−y > 0 for all y ∈ (0, 1) iff μ < 0.053;

2. b
1−y > 0 for low y and b

1−y < 0 for high y iff μ ∈ (0.053, 0.096);

3. b
1−y < 0 for all y ∈ (0, 1) iff μ > 0.096.

Figure 7(b), which plots b
1−y for μ ∈ {0.03, 0.08, 0.12}, is consistent with these predictions.

(In this figure, β has to be chosen appropriately in order to ensure that Conditions I-IV

are satisfied.)

In the mixed case, we have 1
2
σ2B(0) ≈ 0.027, 1

2
σ2B(1) ≈ 0.035 and 1

2
σ2 max{B(y) |

y ∈ [0, 1]} ≈ 0.044. Hence we expect to have:
27If we multiply equations (43) and (45) together and rearrange, then we obtain

Cr(1 + g(1)) =
1

r βr

µ
βr − βP − 1

2

(R− r)2 σ2

r

¶
.

This equation can then be inverted to yield an explicit formula for g(1). The numerical solutions for b
1−y

at y = 1 are in excellent agreement with this formula.
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1. b
1−y > 0 for all y ∈ (0, 1) iff μ < 0.027;

2. b
1−y < 0 for low y, b

1−y > 0 for intermediate y and b
1−y < 0 for high y iff μ ∈

(0.035, 0.044);

3. b
1−y < 0 for all y ∈ (0, 1) iff μ > 0.044.

Figure 7(c), which plots b
1−y for μ ∈ {0.02, 0.04, 0.05}, is consistent with these predictions.

(In this figure, β must again be chosen appropriately in order to ensure that Conditions

I-IV are satisfied.)

Figure 7 about here

What is remarkable about Figure 7 is the way in which the asymptotic expansions give

a detailed guide as to what patterns to expect, and precise suggestions for the parameter

values that will give rise to those patterns.

14. Conclusion

In this paper we have analyzed an optimal risk-sharing problem in which two parties invest

in a common constant-returns-to-scale risky asset. The two parties have different coeffi-

cients of relative risk aversion, and they start with different wealth endowments. We have

taken out many interesting features from the model to keep the analysis tractable. In par-

ticular, we have only allowed for consumption at the end, and we have only considered an

extreme bargaining situation in which one of the parties can make take-it-or-leave-it offers

to the other. Within this model we have, however, been able to push the characterization

of optimal risk-sharing quite far.

For example, we have used asymptotic expansions to obtain approximations to the

optimal risk-sharing rules. These approximations capture in a transparent way the main

tradeoffs that the contracting parties face. Moreover numerical simulations confirm that

the picture that they generate is qualitatively (and sometimes quantitatively) accurate.

The approximations can be decomposed into a myopic benchmark and a dynamic

correction. In the case of the optimal rule s for the Responder’s share in investment risk,

the myopic benchmark s(0) is the classical ratio of the Proposer’s absolute risk aversion

to the sum of the Proposer’s and the Responder’s absolute risk aversions, namely

R
W

R
W
+ r

w

,
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where R and r are the coefficients of relative risk aversion of the Proposer and the Re-

sponder, and W and w are their wealths. This formula captures the basic aspects of

risk sharing. For example, the wealthier or the less risk averse the Proposer, the less the

investment risk taken on by the Responder.

The myopic benchmark does not, however, capture counterparty risk. For example,

if the Responder is risk neutral (i.e. if r = 0), then it predicts that the Responder will

take on all the investment risk. However, if the Responder took on all the investment

risk, then he would run out of wealth in finite time. The Proposer would thereafter not

be able to obtain any insurance. In other words, the Responder’s insurance capacity is

finite, and the Proposer should take this into account by adjusting the risk-sharing rule

to conserve it as it begins to run low.

These ideas are captured by the dynamic correction 1
β
s(1), which can be written in

the form
1
2
Rr σ2 y2 (1− y)2

β ((1− y)R+ y r)5
(R− r)3 ((1− y)R+ y r − 2) ,

where β is the hazard rate of termination, σ is the volatility of investment returns and

y = W
W+w

is the Proposer’s share in total wealth. This formula for the dynamic correction

is the product of three terms. The first is always positive, so the sign of the dynamic

correction is determined by two considerations: whether the Proposer is more risk averse

than the Responder, in the sense that R > r; and whether the average risk aversion of

the two parties is large, in the sense that (1− y)R+ y r > 2. (As each party’s coefficient

of relative risk aversion is weighted by the other party’s share in total wealth, it is the

risk aversion of the poorer party that matters most in this inequality.)

The three key predictions from this formula for the dynamic correction are then as

follows. First, if both investors are fairly risk tolerant (in the sense that R, r < 2), then

the investor who is more risk averse takes on a larger share of total investment risk than

she would under the myopic benchmark. Indeed, the investor who is less risk averse is

willing to take on risk on relatively unfavourable terms. So the more risk he takes on, the

sooner he will run out of wealth. The optimal dynamic contract therefore transfers less

risk to him than the optimal myopic contract.

Second, if both investors are fairly risk averse (in the sense that R, r > 2), then the

investor who is more risk averse takes on a smaller share of total investment risk than

she would under the myopic benchmark. This is because the investor who is less risk

averse is only willing to take on risk on relatively favourable terms. So taking on more
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risk actually delays the time at which he will run out of wealth. The optimal dynamic

contract therefore transfers more risk to him than the optimal myopic contract.

Third, if one investor is fairly risk averse and the other is fairly risk tolerant (in the

sense that R > 2 > r or r > 2 > R), then the investor who is more risk averse takes on a

smaller share of total investment risk when her wealth is small and a larger share when

her wealth is large. This is because, while she would like to reduce the amount of risk

transferred to her risk-tolerant counterparty, the cost of bearing the extra risk herself is

too high when her wealth is low.

In sum, the approximations to the optimal risk-sharing rule s we have derived capture

in a relatively simple way the tradeoff between getting more insurance coverage today and

preserving future insurance options. Moreover, these rules are explicit and easy to apply.
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