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Abstract

This paper proposes a continuous-time model framework of bargaining,
which is analytically tractable even in complex situations like coalitional
bargaining. The main ingredients of the model are: (i) players get to
make offers according to a random arrival process; (ii) there is a deadline
that ends negotiations. In the case of n-player group bargaining, there is
a unique subgame-perfect Nash equilibrium, and the share of the surplus
a player can expect is proportional to her arrival rate. In general coali-
tional bargaining, existence and uniqueness of Markov perfect equilibrium
is established. In convex games, the set of limit payoffs as the deadline
gets infinitely far away exactly corresponds to the core. The limit allo-
cation selected from the core is determined by the relative arrival rates.
As an application of the model, legislative bargaining with deadline is
investigated.
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1 Introduction
The idea of explicitly modeling the dynamic aspects of bargaining goes back to
Stahl (1972) and Rubinstein (1982).1 They analyze a bargaining game between
two players who take turns at making proposals. The key element of the model is
impatience: players care not only about what share of the surplus they acquire,
but they prefer to reach an agreement earlier rather than later. Remarkably,
any nonzero degree of impatience leads to a unique subgame-perfect equilibrium
prediction.

The Stahl-Rubinstein model was extended in many directions.2 One line of
research investigates the robustness of the predictions of dynamic bargaining
models with respect the specification of the bargaining protocol. The general
conclusion of these papers is that uniqueness of equilibrium is not robust to
changing various aspects of the Rubinstein model. For early papers along this
line, see Binmore et al. (1986) and Dekel (1990). Perry and Reny (1993) and
Sákovics (1993) introduce a continuous-time framework, endogenize the order
and timing of offers, and show that a continuum of divisions of the surplus can
be supported in subgame-perfect Nash equilibrium.

The literature on multilateral group bargaining examines situations in which
there are more than one parties involved, but all of them must agree in order
to implement an agreement. A straightforward extension of Rubinstein’s model
yields a severe multiplicity of subgame-perfect equilibria if the number of players
is at least three, even though there is a unique stationary equilibrium.3 Coali-
tional bargaining investigates more complicated situations, when agreements are
possible among subgroups of players, and the surpluses that different coalitions
of players can split among each other can differ. In these games, a proposer
has to choose both a coalition to approach and a division of the surplus that
the coalition generates (for discrete-time models see Gul (1989), Chatterjee et
al. (1993), Moldovanu and Winter (1995), Bloch (1996), Okada (1996), Ray
and Vohra (1997) and (1999), Konishi and Ray (2003), Gomes (2005), and for
a continuous-time model see Perry and Reny (1994)).

Although the importance of coalitional bargaining is recognized in the the-
oretical literature, its application is limited by the fact that models proposed
thus far are hard to analyze, sensitive to the specification of the bargaining pro-
tocol, and - related to the former two issues - not amenable to obtaining general

1See also Shaked and Sutton (1984) for a simpler analysis of Rubinstein’s game.
2A major extension of the dynamic bargaining model framework that we do not take up in

this paper involves incorporating private information held by one or more of the bargaining
parties. For early references on bargaining with asymmetric information, see Fudenberg and
Tirole (1983), Sobel and Takahashi (1983), Cramton (1984), Fudenberg et al. (1985), Rubin-
stein (1985), and Gul et al. (1986). For a relatively recent survey of the topic, see Ausubel et
al. (2002).

3 See for example Osborne and Rubinstein (1990, p63). See also Krishna and Serrano
(1996), who modify the game such that players can exit the game with partial agreements,
and obtain a unique equilibrium.
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predictions. For this reason, existing applications like Ray and Vohra (2001),
Genicot and Ray (2003), and Aghion et al. (2007) do not simultaneously tackle
coalition formation and the division of surplus within a coalition, but only focus
on one of these issues (for example, by fixing how surplus is divided within a
coalition).

In this paper, we aim to propose a model framework that is sufficiently an-
alytically tractable to facilitate the analysis of complex bargaining situations
like coalitional bargaining. We consider a continuous-time framework, in which
players get random opportunities to approach others and make a proposal. In
particular, we assume that the points in time at which a player gets the chance
to make a proposal correspond to arrival times of a Poisson procedure, and that
arrival times of different players are independent of each other. Players with
higher arrival rates can in expectation propose more frequently. This might be
either a consequence of institutional features, like certain members of a legis-
lature (party leaders or other elected officials within the legislature) enjoying
preferential treatment in initiating proposals, or of how much attention and
resources a player can devote to the bargaining procedure at hand. Making
an offer in a bargaining procedure might involve preparing a written contract
proposal, getting approval from various actors (superior, board of trustees, or
one’s spouse), organizing a meeting/conference call with the parties to be ap-
proached, and communicating the offer. Players can be heterogeneous in how
much time each of these steps requires.

Any player, when getting a chance to make a proposal, can approach any
coalition of players that contains the proposer. The values of possible coali-
tions (how much surplus any group of players can generate by themselves) are
exogenously given by a superadditive characteristic function. Once an offer is
made, we assume that the approached parties react immediately, and all of them
have to accept the proposal in order for an agreement to be reached. Once an
agreement is reached (by some coalition), the game ends. If a proposal is re-
jected by any of the approached players, the game continues, and players wait
for the next arrival time. Two highlighted special cases that fit into this general
framework are n-player group bargaining, where only the grand coalition can
generate positive surplus, and legislative bargaining along the lines of Baron
and Ferejohn (1989), where any large enough coalition of players (in the case of
simple majority, voting coalitions involving more than half of the players) can
end the game by reaching an agreement. Although the framework we consider
is flexible enough to facilitate the analysis of these special cases as well as many
others, there are various extensions of the model that would make it more real-
istic in other situations, like introducing a (probabilistic or deterministic) lag in
responding to an offer, allowing bargaining to continue even after an agreement
is reached (with either only the players who were not part of previous agree-
ments staying in the game, or all players staying in the game and potentially
willing to renegotiate existing agreements), or allowing for external effects of
agreements on the excluded players. These are issues that have been investi-
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gated in previous models of coalitional bargaining, and we plan to revisit them
in future work, using the framework introduced in this paper.

One important component of our model is that we assume the existence of
a deadline, after which the game ends even if no agreement was reached, and
all players receive a payoff of zero.4 Our motivation for proceeding this way
is twofold. First, in many real-world bargaining situations, there are natural
deadlines that end negotiations. If the NHL (National Hockey League) and
the NHL Players’ Association do not reach an agreement by a certain date,
then the season needs to be canceled, as happened in 2004. If an organization
owning the broadcasting rights to an event does not reach an agreement with
a TV station on the terms of broadcast by the time the event takes place,
and the event is only of interest if broadcast live, then the surplus is lost for
both parties. For reaching an out-of-court settlement, the announcement of the
verdict poses a final deadline. Finally, in legislative bargaining, the end of the
legislature’s mandate provides an upper bound on how long negotiations can
last. Our second motivation is technical: having a deadline helps in deriving
a unique prediction for the bargaining game. We pay highlighted attention
to characterizing limit equilibrium payoffs as the deadline gets infinitely far
away, and consider this exercise a way of deriving a prediction in bargaining
games with no clear deadline for the end of negotiations. We also note that
because of the continuous-time framework, there is no highlighted (and arguably
unrealistic) “last period” in our model, in the sense that it is a 0-probability
event that some player receives an arrival right at the deadline. Instead, as the
deadline approaches, it simply becomes more and more likely that there will not
be time for reaching an agreement before time expires.

Using the above framework, we first investigate n-player group bargaining.
We show that there is a unique subgame-perfect Nash equilibrium, explicitly
derive equilibrium payoffs, and show that the expected payoff of every player
is monotonic in the length of the game, and in the limit as the deadline gets
infinitely far away, players share the surplus in proportion to the arrival rates.
Hence, in our framework, being able to propose more frequently increases a
player’s payoff, as opposed to what happens in the models of Perry and Reny
(1993) and Sákovics (1993). In the latter models the longer a player’s waiting
time is, the more costly it is for her opponent to reject an offer, as the opponent
would have to wait a long time before her counteroffer can feasibly be accepted.
By contrast, in our model, approached players only accept an offer if they are of-
fered at least their equilibrium continuation payoffs, and a player’s continuation
payoff increases in her arrival rate because of the higher probability that she
receives the proposer surplus (the difference between the total pie and the sum
of continuation values). The uniqueness of subgame-perfect equilibrium, which

4For deadline effects in discrete-time bargaining models, see Fershtman and Seidmann
(1993), who examine bilateral bargaining with a particular commitment, and Norman (2002),
who investigates legislative bargaining.
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contrasts with infinite-horizon models of group bargaining with discounting, is
due to the anchoring effect of the deadline.

In general coalitional bargaining, unlike in the special case of group bargain-
ing, it is not only the arrival rates and the length of the game that determine
expected payoffs in equilibrium, but also the values of different coalitions. For
example, if the continuation payoff of a given player rises above her marginal
contribution to the grand coalition as the deadline gets further away, the other
players stop approaching her and instead propose to each other. In general,
the characteristic function imposes constraints on the sum of payoffs of players
in different coalitions, while arrival rates determine which payoff among those
satisfying the constraints is achieved in equilibrium. The interplay of coali-
tional constraints and different frequencies of proposals potentially results in a
complicated equilibrium path, which can be nonmonotonic. That is, a player’s
expected payoff can both increase or decrease over different ranges of time be-
fore the deadline. In general, a player that can propose very frequently finds it
optimal to have an intermediate time horizon for negotiations.

In the general framework, we show both the existence and the uniqueness
of Markov perfect equilibrium (where the payoff relevant state is the time re-
maining before the deadline). We are unaware of any uniqueness result in the
literature that applies to such a large class of coalitional bargaining problems
(Eraslan (2002) shows uniqueness of stationary equilibria in legislative bargain-
ing games, which is a relatively simple special case of our general setup). While
the proof of this result is involved, the rough intuition behind it is simple: In
Markov perfect equilibrium all players, upon an arrival, approach one of the
coalitions that maximize the difference between the value of the coalition and
the sum of continuation values of other players in this coalition. In other words,
players always approach the coalitions that are cheapest relative to their values.
Suppose now that two Markov perfect equilibria generate different continuation
value paths. Consider the earliest time such that continuation values always
coincide in the two equilibria between this time and the deadline (such a time
always exists because at the deadline all continuation values are zero in any equi-
librium). The fact that continuation value paths differ before this time means
that there is a coalition that gets relatively more expensive than another coali-
tion in one equilibrium than in the other one. We show that this requires that
close enough to the deadline, players in the first coalition are approached more
frequently, relative to players in the other coalition, in one equilibrium versus the
other one. However, we show that this contradicts the requirement that every
player at every point of time should approach the relatively cheapest coalition,
since that implies that the coalition becoming relatively more expensive should
be approached relatively less frequently.

We also provide a characterization of possible limit equilibrium payoffs in
games with convex characteristic functions. We show that there is an exact
equivalence between possible limit payoffs with different arrival rates, and the
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core of the underlying cooperative game. In particular, any limit payoff of the
game for any set of arrival rates has to be in the core, and any point of the
core is the unique limit payoff of the game for some vector of arrival rates. We
show by example that this core convergence result does not generally hold for
nonconvex games with nonempty core. Our results are similar to some of the
findings obtained in other models of coalitional bargaining, like Chatterjee et al.
(1993) and Perry and Reny (1994). The difference is that through the arrival
rates we provide an explanation that which point of the core is attained in a
given specification of the game, and show that by varying arrival rates each
point of the core can be attained as a limit equilibrium payoff.

We conclude the paper with an application of legislative bargaining with
deadline. We show that expected payoffs are monotonic in arrival rates, and
provide a simple algorithm that determines limit payoffs as the deadline gets
infinitely far away. The payoffs of the q players (where q is the quota that is
required to pass a bill) with the lowest arrival rates are always equalized if the
time horizon is long enough, but the expected payoff of players with the highest
arrival rates can remain bounded away from the former players even in the limit
as the deadline gets infinitely far away. Just like in the general setup, a player
who can propose sufficiently frequently finds it optimal to set an intermediate
deadline for negotiations, as opposed to a very short or very long one.

2 The model
Consider a bargaining situation with set of players N = {1, 2, ..., n} and char-
acteristic function V : 2N → R+, where V (C) for C ⊂ N denotes the surplus
that players in C can generate by themselves (without players in N\C). We
refer to elements of 2N as coalitions. We assume that V is superadditive, i.e.
that for any two coalitions C1, C2 such that C1 ∩ C2 = ∅, the value of the
coalitions satisfy V (C1) + V (C2) ≤ V (C1 ∪ C2). Occasionally we will refer to
the collection (N,V ) as the underlying cooperative game behind the dynamic
bargaining model investigated. The core of the underlying cooperative game is
defined as: C(V ) = {x ∈ Rn :

P
i∈C

xi ≥ V (C) ∀ C ⊂ N and
P
i∈N

xi = V (N) }.

The dynamic bargaining game we investigate is defined as follows. The game
is set in continuous time, starting at −T < 0. There is a Poisson arrival process
associated with each player i, with arrival rate λi. The processes are independent
from each other. For future reference, we define λ ≡

Pn
i=1 λi. Whenever the

process realizes for a player i, she can make an offer x = (x1, x2, ..., xn) to
a coalition C ⊆ N satisfying i ∈ C. The offer x must have the following
characteristics:
1. xj ≥ 0 for all 1 ≤ j ≤ n;
2.
Pn

j=1 xj ≤ V (C).
Players in C\{i} immediately and sequentially accept or reject the offer (the

order in which they do so turns out to be unimportant). If everyone accepts,
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the game ends and all players in N are paid their share according to x. For
simplicity, we assume that players do not discount their payoffs.5 If an offer is
rejected by at least one of the respondents, it is taken off the table, and the game
continues with the same Poisson arrival rates. If no offer has been accepted at
time 0, the game ends, and all players receive payoff 0.

3 Group bargaining
In order to facilitate understanding of the model framework, we start the analy-
sis with the simplest possible specification of the model: n-player group bar-
gaining. Formally, in this section we assume that V (N) = 1, and that V (C) = 0
∀ C 6= N . Since only the grand coalition can generate value, the acceptance of
every player is required for any outcome with nonzero payoffs.

As is well-known in the literature, if the number of players is at least 3,
in an alternating-offer bargaining game with infinite horizon, any division of
the surplus can be supported in subgame-perfect Nash equilibrium (SPNE), if
players are patient enough.6 In Section 8, we show that this conclusion remains
valid in our continuous-time framework with random arrivals. In stark contrast
to this, in the game with deadline, there is a unique SPNE for any vector of
arrival rates. Below we show this result formally. However, since the role of
the deadline is hidden in the proof of the theorem, we find it instructive to
first provide an intuitive proof for the uniqueness of Markov perfect equilibrium
(MPE) in a game with two players.7 By Markov perfect equilibrium, we mean
a subgame-perfect Nash equilibrium in which any proposer’s offer depends only
on the time remaining before the deadline (not the history of the game before-
hand), and any acceptance decision depends only on the time remaining before
the deadline, the current proposal on the table, and the acceptance/rejection
decisions already made to the current proposal.

Suppose there are two players in the game, with arrival rates λ1 and λ2. Let
vi(t) denote the expected payoff of player i if she gets an arrival at time t, and
wi(t) denote the expected payoff of player i if player j 6= i gets an arrival at t.
Note that in any MPE, vi(0) = 1 and wi(0) = 0. We can then explicitly compute

an MPE by assuming that wi(t) =
R 0
t

h
λie
−λ(τ−t)vi(τ) +

P
j 6=i λje

−λ(τ−t)wi(τ)
i
dτ

and vi(t) = wi(t) + eλt, where eλt is the probability that no player gets an ar-
rival after t. Note that continuation payoffs that satisfy the conditions above are
consistent with equilibrium, since a player, whenever she gets an arrival, offers
exactly the continuation value of the other player and keeps the rest of V (N)

5 Incorporating discount factors in the model is straightforward and does not change the
qualitative conclusions of the model. See the discussion in Subsection 8.1.

6 See for example Osborne and Rubinstein (1990, p63).
7The arguments can be formalized and extended to provide a proof for uniqueness of MPE

for any number of players. This is not included in the paper because Theorem 1 establishes a
stronger result.
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for herself. The solution of the resulting system of differential equations yields
expected continuation payoff functionsWi(t) =

λi
λ (1−eλt) and proposer payoffs

Vi(t) =
λi
λ +

λj
λ e

λt for i = 1, 2. Suppose now that equilibrium is not unique.
Then there exists t < 0 such that either the supremum or the infimum of player
i’s MPE payoffs, when the other player receives an arrival at t, is not equal to
Wi(t). Assume the former (the argument for the latter is exactly symmetric).
Let wi(t) denote the supremum of player i’s expected payoff in MPE when j 6= i
gets an arrival at t, and let vi(t) denote the supremum of player i’s expected
payoff in MPE when she gets an arrival at t. Note that wi(t) is bounded above
by the expected payoff resulting from player i expecting the highest possible
MPE payoff at any future arrival:

wi(t) ≤
Z 0

t

⎡⎣λie−λ(τ−t)vi(τ) +X
j 6=i

λje
−λ(τ−t)wi(τ)

⎤⎦ dτ (*)

Moreover, the history-independent nature of MPE implies that: (i) wi(t) is
equal to the supremum of player i’s expected payoff in MPE if no player gets
an arrival at t; and (ii) vi(t) = wi(t) + eλt, where eλt is the probability that no
player gets an arrival after t. Substituting the latter into (*) implies that, since

Wi(t) =
R 0
t

h
λie
−λ(τ−t)Vi(τ) +

P
j 6=i λje

−λ(τ−t)Wi(τ)
i
dτ , if wi(t) − Wi(t) =

ε > 0, then there has to be a strictly positive mass of times τ later than t such
that wi(τ)−Wi(τ) ≥ ε. In particular, the latest time such that wi(τ)−Wi(τ) ≥ ε
has to be larger than t + 1

λεe
λt, a term increasing in t. Repeated use of this

argument then establishes that wi(0)−Wi(0) ≥ ε, which leads to a contradiction
since at 0, the continuation value of i if she does not get a proposal has to be 0
in all MPE.

We now formally prove the stronger result of the uniqueness of SPNE in
n-player group bargaining games. The proofs of all formal results are in the
Appendix.

Theorem 1: In any SPNE, the n-player group bargaining game ends at the
first realization of the Poisson arrival process for any player. After any arrival,
an offer is made to N and all players accept. SPNE payoff functions are unique,
with player i receiving λi

λ +(1−
λi
λ )e

λt when she makes the offer at time t, and
λi
λ (1− eλt) when she is not the proposer.

Theorem 1 implies that the expected payoffs of players converge to the rel-
ative arrival rates as the deadline gets infinitely far away: the expected payoff
of player i converges to λi

λ as T → ∞. Moreover, a player’s expected payoff,
both unconditionally and conditionally on getting an arrival, is monotonically
increasing in her arrival rate, at all times. Figure 1 below depicts expected
continuation payoffs of the game if n = 3, and arrival rates are λ1 = 1

2 , λ2 =
1
3 ,

and λ3 =
1
6 . Continuation values at the deadline are 0 for all players. Going

back in time, continuation values start increasing at the rate corresponding to
arrival rates, and converge to the relative arrival rates.
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Figure 1.

Figure 2 depicts the payoff of players in the same game conditional on getting
an arrival, at different points of time. These payoffs are interconnected with the
expected continuation payoffs depicted on the previous graph in that any player
getting an arrival needs to offer exactly the continuation payoff to the other two
players. Therefore, any player close to the deadline can keep most of the pie
to herself, and payoffs conditional on proposing are monotonically decreasing in
time.
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Figure 2.

The fact that in our model, a player’s ability to make offers more frequently
increases her expected payoff is in contrast with the predictions of the models
in Perry and Reny (1993) and Sákovics (1993). In these models, a player that
can only speak infrequently obtains a higher share of the surplus because she
can credibly threaten to impose a higher time cost on other players, should her
offer be rejected.

4 Examples of coalitional bargaining
In this section, we turn our attention to the general framework introduced in
Section 2, where coalitions other than the grand coalition can also generate pos-
itive value. We present several examples that illustrate some of the additional
features of equilibrium dynamics, relative to the simpler context of group bar-
gaining. In all of the following examples, we assume that n = 3 and V (N) = 1.
These games each have a unique MPE (a general feature of our framework, as
shown in section 5), which we simply refer to as “equilibrium” below.

Example 1. First, consider a game in which λ1 =
1
2 , λ2 =

1
3 , λ2 =

1
6 ,

V (C) = 2
5 if |C| = 2, and V (C) = 0 if |C| = 1. This is the same game as
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the one in Figure 1, the only difference being that two-player coalitions can
generate a positive value. However, in this game, the marginal contribution
of any coalition to the grand coalition is never less than its share of arrivals.
For example, the marginal contribution of any single player, 35 , is higher than
her relative arrival rate. As a result, everyone always approaches the grand
coalition, and continuation values evolve as in Figure 1.

Example 2. Consider next the game in which λ1 =
2
3 , λ2 = λ3 =

1
6 , V (C) =

1
2 if |C| = 2, and V (C) = 0 if |C| = 1. In this game, player 1’s relative arrival
rate, λ1

λ = 2
3 , is greater than her contribution to the grand coalition. Hence,

before a certain time, players 2 and 3 do not propose to her with probability 1.
Instead, they randomize between approaching the grand coalition and coalition
{2, 3} in a way that keeps player 1’s continuation payoff constant at 1

2 (which
makes the other players indifferent between including and excluding her). The
continuation payoffs of players 2 and 3 keep increasing as we get further away
from the deadline (since they are always included in the coalition approached)
and converge to ( 14 ,

1
4 ), which results from sharing the value of coalition {2, 3}

in proportion with the relative arrival rates. The situation is depicted in Figure
3.

Figure 3.
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Example 3. The next example shows that besides a player’s marginal con-
tribution to the grand coalition, her contribution to other coalitions can also
impose a constraint on the limit payoff the player can expect in equilibrium.
Let λ1 = λ2 = λ3 =

1
3 , V ({1}) =

1
2 , V ({1, 2}) =

5
6 , and let the value of all

other coalitions other than the grand coalition be 0. As depicted on Figure
4, going back in time from the deadline, all players’ payoffs start increasing at
the same rate. When player 3’s continuation payoff reaches 1

6 , her marginal
contribution to the grand coalition, the other two players stop proposing her
with probability 1, in a way that keeps player 3’s continuation payoff constant
at 1

6 . The other two players’ continuation payoffs keep increasing until player
2’s payoff reaches 13 , which is her marginal contribution to the value of coalition
{1, 2}. At this point, player 1 starts proposing with positive probability to the
singleton coalition involving only herself (that is, excluding player 2), and player
2’s continuation payoff is kept constant at 13 . Finally, player 1’s payoff converges
to 1

2 , the value she can generate by herself.

Figure 4.

Example 4. Consider now a game with exactly the same characteristic func-
tion as in Example 2, but with arrival rates λ1 = 4

5 , λ2 = λ3 =
1
10 . In this game,
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player 1 proposes so frequently relative to other players that even if the others
exclude her from the offer for sure, her continuation payoff can still increase
when going back in time, as Figure 5 illustrates. However, if we get sufficiently
far away from the deadline, player 1’s expected payoff falls back to 1

2 . This
is because in order to keep player 1’s continuation payoff above 1

2 when she is
excluded from other players’ offers, she needs to receive a relatively high payoff
as a proposer when she gets an arrival. Since the other two players’ continu-
ation payoffs are strictly increasing when going back in time, player 1’s payoff
conditional on being the proposer shrinks. As soon as player 1’s payoff falls
back to 1

2 , the other players start including her in the offer again with positive
probability. Moreover, the probability that the grand coalition is proposed to,
conditional on an arrival, converges to 1 as the deadline gets infinitely far away.
This example illustrates two interesting nonmonotonicities associated with

multilateral bargaining with deadline. The first is that while close to the dead-
line, everyone approaches the grand coalition and therefore agreements are
Pareto efficient, and taking the deadline to infinity implies convergence to effi-
ciency, there can be an intermediate range of time horizons in which inefficient
agreements are made with high probability.8 The second one is that a player’s
expected payoff can be a nonmonotonic function of the time remaining before the
deadline. Player 1 in the above example prefers the intermediate time horizon
T = 3 to both the very short horizon T = 1

2 (which implies too high proba-
bility of no agreement reached in time) and the very long one T = 10 (which
implies that player 1 has to offer a high payoff to the players with slower arrival
processes).

8 In fact, it is easy to construct examples in which, during an intermediate time range, an
inefficient agreement is proposed with probability 1, conditional on arrival by any player in
this range.
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Figure 5.

Example 5. Next consider the classic example of one seller and two buyers,
with the seller having only one object to sell. Let the seller be player 1. Here
V (N) = V ({1, 2}) = V ({1, 3}) = 1, while the value of all other coalitions are
0. Assume λ1 = λ2 = λ3 =

1
3 . Note that the marginal contribution of both

buyers to the grand coalition is 0. As Figure 6 illustrates, this results in the
continuation payoffs of the buyers first increasing, but at some point starting
to decrease and eventually converging to 0. In the limit as the deadline gets
far away, the seller obtains all the surplus. At any point of time, if a buyer
gets an arrival, she proposes to the 2-player coalition involving herself and the
seller. At the same time, the seller always approaches one of the two buyers
with equal probability, which keeps the continuation values of buyers equal to
each other (if one buyer has a higher continuation value than the other, then
the seller would not approach her).
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Figure 6.

Example 6. Our final example shows a situation in which the underlying
cooperative game has an empty core. Let λ1 = λ2 = λ3 =

1
3 , V ({1, 2}) =

V ({1, 3}) = V ({2, 3}) = 3
4 and V ({1}) = V ({2}) = V ({3}) = 0. Here, each

player’s marginal contribution to the grand coalition is 1
4 . Hence, once contin-

uation values reach 1
4 , all players switch to proposing to 2-player coalitions, in

a way that keeps everyone’s continuation payoff constant at this level. This im-
plies that players make inefficient agreements even in the limit as the deadline
gets far away.
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Figure 7.

5 Existence and uniqueness of Markov-perfect
equilibrium

Below we show that in every game fitting into the general model framework
introduced in Section 2, an MPE exists, and the continuation payoff functions
of all players are uniquely determined in MPE. That is, while strategies in the
general model might not be uniquely determined in MPE, they can only vary
in a payoff-irrelevant way.9 We are not aware of any similar uniqueness result
in the literature that would apply to a general class of coalitional bargaining
games. We also note that in discrete models with finite horizon, uniqueness of
MPE payoffs does not hold in general, even in relatively simple bargaining games
like legislative bargaining, since the way players break ties in some period can
generate multiplicity in all preceding periods.10 In our continuous framework,

9For example, if there are three players with equal arrival rates, and all players approach
two-player coalitions in a way that every player is approached by others with the same prob-
ability, then it is payoff-irrelevant whether all players approach each of the other two players
with probability 1/2-1/2, or whether player 1 always approaches player 2, player 2 always
approaches player 3, and player 3 always approaches player 1.
10The resulting multiplicity can be quite severe: see Norman (2002) on this point.

16



tie-breaking ceases to be an issue. Whether SPNE are unique in our framework
remains an open question.

We prove the existence of MPE by considering a sequence of discrete-time
approximations of the continuous game in which the time lag between periods
goes to zero. Each of the games along this sequence has a Markov perfect equi-
librium that can be obtained by backward induction. Moreover, the resulting
equilibrium continuation value functions are Lipschitz-continuous, with a uni-
form Lipschitz constant given by arrival rates and V (N). Hence, by the Ascoli-
Arzela theorem, there is a subsequence of the games such that the associated
continuation payoffs uniformly converge to a limit function (which is Lipschitz-
continuous with the same constant). The proof is concluded by constructing
strategies that are optimal given the above limit continuation functions, and
generate exactly the same continuation payoffs.

Let G stand for a generic game defined in Section 2.

Theorem 2: G has an MPE.

We proceed by showing a simple result that reveals an important feature
of MPE in our model, and will be used in the subsequent uniqueness proof.
It states that in MPE at any point of time any player, if getting an arrival,
only approaches coalitions that maximize the difference between the value of
the coalition and the sum of continuation payoffs of players other than her in
the coalition. Intuitively, players only approach coalitions that are the cheapest
to buy relative to the value they can generate.

Claim 1: In any MPE, at any t ≤ 0 where i ∈ N receives an arrival, she
approaches a coalition C ∈ argmax

D⊂N
V (D)−

P
j∈D\{i}

wj(t) and offers exactly wj(t)

to every j ∈ C\{i}. Furthermore, the offer is accepted with probability 1.

Next we establish the uniqueness of MPE payoffs. The intuitive summary
of the proof is as follows. Suppose that there are two Markov-perfect equilibria,
A and B, with different continuation payoff functions. Suppose that, going
backwards in time, continuation payoffs between the two equilibria first diverge
at t.

In the first part of the proof, we show that close to t, for any player, con-
tinuation values depend primarily on the probability of being approached; that
is, having a strictly higher continuation value in A than in B is generally as-
sociated with being approached strictly more often under A than under B. To
see why this is the case, note that in general, holding arrival rates and future
expected payoffs fixed, one expects both the probability of being approached
and the share obtained when proposing to influence continuation values. How-
ever, close to t, the difference between the two equilibria for the former, a jump
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variable, is of a greater order of magnitude than for the latter, which is Lipschitz-
continuous. The actual proof proceeds as follows: define fi(τ) as the difference
between player i’s payoff in equilibrium A (wA

i ) and her payoff in equilibrium
B (wB

i ), at time τ ; let gi(τ) be the analogous difference in the density of being
proposed to by another player. To show that we can find τ arbitrarily close

to t such that
P

j∈N

h
fj(τ)

R t
τ
gj(t

0)dt0
i
> 0 (Lemma 2), we start by showing

that fi(τ) −
R t
τ
e−λ(t

0−τ)wB
i (t

0)gi(t
0)dt0 is bounded by a quantity on the order

of (t − τ)fi, when (roughly speaking) |fi| is large enough compared to |fj | for
j 6= i. Lemma 1, a technical result, allows us to eliminate the e−λ(t

0−τ)wB
i (t

0)
term inside the integral. The short argument following Lemma 2 allows for the
right endpoint of the interval to be different from t, as long as it is close enough
to t. In particular, this allows us to pick an interval I where, for any pair of
coalitions (C,C 0), the sign of the change (as we move from A and B) in the
difference of continuation values between the two coalitions (fC,C0) remains the
same for all times within I.

The second part of the proof starts with observing that optimality imposes
that a coalition can take proposals away from another as we switch equilibria
only if it has become relatively “cheaper”. Denoting the change (from equilib-
rium A to equilibrium B) in the relative probability of the two coalitions being
approached by gC,C0 , we have that fC,C0gC,C0 ≤ 0. Since within I, fC,C0 retains
the same sign, then so does gC,C0 , so that for any τ ∈ I, fC,C0(τ)

R
I
gC,C0 ≤ 0.

Thus, loosely speaking, for any coalition, having a strictly higher continuation
value in A than in B is generally associated with being approached less often
under A than under B. This observation is the opposite of the one made in the
first part of the proof, but for coalitions instead of individual players. Finally,
using simple calculations, we derive a contradiction with the result obtained in
the first part.

Theorem 3: MPE payoff functions are unique.

6 Limit of payoffs when the time horizon in-
creases

In this section, we investigate the relationship between the parameters of the
game (characteristic function, arrival rates) and expected payoffs in MPE as the
time horizon grows indefinitely. We note that this is equivalent to investigating
the effect of increasing arrival rates with a fixed time horizon, while keeping
relative arrival rates unchanged. We first show that if the underlying cooperative
game has a nonempty core, then any point of the core can be obtained as the
unique MPE (which also turns out to be the unique SPNE) of the game for
some vector of arrival rates. Next, we establish a partial converse of this result
and show that in convex games, for any vector of arrival rates, expected payoffs
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converge to a point of the core. Although the latter result extends to all three-
player games with nonempty core, we show by example that it does not hold
for all games with nonempty core.

Our results on the relationship between limit points of MPE payoffs and the
core resemble some existing results from the literature of coalitional bargain-
ing. In Chatterjee et al. (1993), any limit of efficient stationary equilibria as
the discount factor goes to 1 has to be in the core, and strict convexity of the
characteristic function is sufficient for the existence of efficient equilibrium.11

Perry and Reny (1994) show that in their continuous-time framework: (i) non-
core allocations cannot be supported as stationary SPNE; and (ii) in totally
balanced games, an allocation can be supported in SPNE if and only if it is in
the core. For other related results in various coalitional bargaining situations,
see Moldovanu and Winter (1995), Bloch (1996) and Evans (1997). Our results
differ from all the above findings in that in our model, for every specification of
the game, there is a unique MPE, but as we vary arrival rates, we can support
any core allocation to be the unique limit MPE payoff of the game. Therefore,
in convex games we establish an exact equivalence between the limit payoffs
of the game and the core, and we provide a theory through the arrival rates
that explains which point of the core becomes the limit payoff for a concrete
specification of the game.

Throughout this section, we denote the core as C(V ).

Theorem 4: For every x ∈ C(V ), there exist arrival rates {λi}i∈N such that
expected payoffs in SPNE are unique for any finite T > 0, and x is the limit of
SPNE payoffs as T →∞.

The following definition and lemma are needed to prove Theorem 5, which
is a partial converse of Theorem 4.

Definition: A bargaining game is convex if V (C ∪ A) − V (C) ≥ V (C0 ∪
A)− V (C0), whenever C ⊃ C 0 and C ∩A = C 0 ∩A = ∅.

Claim 2: If V is convex, then for any ε > 0, there exists T ∗ such that in
any MPE of a game with T > T ∗, continuation values are such that

P
i∈C

wi(t) ≥

V (C)− ε, ∀ C ⊂ N and t ≤ −T ∗.

Claim 2 implies that in any limit MPE payoff of a convex game, the sum
of payoffs for coalition members have to be at least as high as the value of the
coalition. Since this holds for the grand coalition as well, the resulting allocation
has to be in the core.
11However, the limit of efficient stationary equilibria is always one point in the core (the one

that Lorenz-dominates all core allocations). Moreover, there can exist inefficient stationary
equilibria too, the limit of which does not have to be in the core.
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Theorem 5: If V is convex, then for any fixed vector of positive arrival
rates (λi)i∈N , and any x which can be obtained as a limit of Markov perfect
equilibrium payoffs when taking T to infinity, it holds that x ∈ C(V ).

The same result, namely that any limit payoff of the game has to be in the
core, can also be established for all 3-player games with nonempty core.12

Theorem 6: If N = 3 and C(V ) 6= ∅, then for any fixed vector of positive
arrival rates {λi}i∈N , any limit allocation (w1, w2, w3) of a MPE is in C(V ).

We conclude the section by providing an example of a 4-player game with
a nonempty core, in which payoffs converge to a point outside the core, as the
deadline gets infinitely far away. In this example, the underlying game is not
totally balanced; that is, although the game has a nonempty core, it is not true
that all subgames have a nonempty core. We do not know whether the core
convergence result can be extended to all totally balanced games, a superset of
both convex games and 3-player games with nonempty core.

Example 7. Let N = {1, 2, 3, 4}, V (N) = 1, V ({1, 2, 3}) = 1
2 , V ({1, 2}) =

V ({2, 3}) = V ({3, 1}) = 3
8 , λ1 = λ2 = λ3 =

1
15 , λ4 =

4
5 . The game is not

totally balanced since the core in the subgame with players 1, 2 and 3 is empty.
However, the complete game has a nonempty core; for example, (14 ,

1
4 ,

1
4 ,

1
4) ∈

C(V ). It can be shown that in the limit as the deadline gets infinitely far away,
expected payoffs converge to the inefficient allocation (12 ,

1
8 ,

1
8 ,

1
8).

7 Application: legislative bargaining with dead-
line

In this section, we investigate the special case of our model in which the value
of every coalition of size at least K is 1, and the value of all other coalitions is
0. This corresponds to a legislative bargaining game in the tradition of Baron
and Ferejohn (1989), in which n > K legislators are voting on how to allocate
a fixed surplus among each other, with a K-majority voting rule. In particular,
K =

¥
n
2

¦
+ 1 corresponds to a simple majority voting rule. The differences

between this setup and the model proposed by Baron and Ferejohn are that:
(i) instead of discrete periods with a proposer randomly selected in each period,
time is continuous, and proposal times arrive randomly (hence the time between
subsequent proposals is random); (ii) there is a deadline after which the surplus
is lost. We regard the first difference to be technical, while the second one to be
substantial. Having a deadline in legislative bargaining is a natural assumption
in many cases: one possible final deadline is when the mandate of the legis-
lature expires. Another example is coalitional government formation when the

12 In fact, for any vector of arrival rates, it is fairly straightforward to characterize the limit
payoffs for all 3-player games with nonempty core. But doing so is cumbersome because many
different cases need to be considered.
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constitution prescribes a new general election if a government is not successfully
formed by a certain deadline.

Our first result establishes that if a player has a higher arrival rate (can
propose more frequently in expectations) than another player, then the first
player’s continuation value is always weakly above the second one’s.

Claim 3: If λi ≤ λi0 , then wi(t) ≤ wi0(t) ∀ t ≤ 0.

Next we show that the limit of expected shares of the surplus as the time
horizon goes to infinity can be obtained by a simple procedure. Without loss
of generality assume that players are ordered such that λ1 ≤ λ2 ≤ ... ≤ λn,
and that λ = 1. Assume also that λ1 6= λK (the arrival rates of the K players
with the lowest arrival rates are not exactly the same). This assumption can
be easily dispensed with without invalidating the results below, but it simplifies
the exposition.

For every j ∈ {1, ..., n} define xj = (xj1, ..., xjn) as follows:
Let x be the solution to the equation jx + (1 − (K − 1)x)

nP
i=j+1

λi = 1.

Then for every i ∈ {1, ..., j} let xji = x, and for every i ∈ {j + 1, ..., n} let
xji = (1− (K − 1)x)λi. Note that by definition xjj0+1 ≥ xjj0 whenever j

0 > j.

Let j∗ be the smallest j ∈ {1, ..., n} such that xj
∗

j∗+1 ≥ xj
∗

j∗ (assume this
holds trivially for j∗ = n). It is easy to verify that j ≥ K. To simplify notation,
let x∗i = xj

∗

i ∀ i ∈ {1, ..., n}.

Theorem 7: As T → −∞, continuation payoffs converge to (x∗1, ..., x∗n).
There exists T ∗ < 0 such that wi(t) = wi0(t) ∀ i, i0 ∈ {1, ..., j∗} and t < T ∗.

The above theorem implies that if the deadline is sufficiently far away, then
the continuation values of the j∗ players (where j∗ ≥ K) with the lowest arrival
rates are equal, and each of these players is approached with positive probabil-
ity.13 The continuation values of the rest of the players are above the previous
level, and ordered according to the relative arrival rates.

For illustration, consider the following two three-player examples. Assume
first that λ1 = 0.25, λ2 = 0.3, and λ3 = 0.45. As Figure 8 shows, close to the
deadline, w1 < w2 < w3. However, since in this region player 3 approaches
player 1 with probability 1 (and player 2 with probability 0), eventually the
absolute value of the derivative of w1 becomes greater than that of w2, and at a
certain time (t∗ ≈ −0.78), the continuation values of players 1 and 2 become the
same. Before t∗ both players 1 and 2 are approached by player 3 with positive
probability, while player 3 is not approached by the other players. In this

13Not with equal probability though. Players with lower arrival rates are approached by
others more frequently - this is what keeps the continuation values of the j∗ players equal.
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Figure 1:

game player 3’s arrival rate is not high enough so that her continuation value
permanently stays above the other players’ given that she is not approached
by them. At a certain time (t∗∗ ≈ −2.7) the continuation values of players 1
and 2 catch up with the continuation value of player 3. Before t∗∗ all players’
continuation values are equal and converge to 1

3 as t→ −∞.

Figure 8.

Assume next that λ1 = 0.15, λ2 = 0.25, and λ3 = 0.6. As the Figure 9 shows,
again close to the deadline, w1 < w2 < w3, and there is a point (t∗ ≈ −1.71)
such that w1 becomes equal to w2. However, in this example, despite the fact
that player 3 is never approached by any of the other players, her continuation
value always stays above the continuation values of the other players, because
her relative arrival rate is high enough. If the deadline gets infinitely far away, w3
converges to approximately 0.426, while w1 and w2 converge to approximately
0.287.
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Figure 9.

Both of the above examples show that the difference between expected pay-
offs of a player who can propose more frequently and a player who can propose
less frequently is non-monotonic over time. Going back in time starting from
t = 0, the difference between player 2’s continuation value and player 1’s contin-
uation value is first increasing, then decreasing. Moreover, the second example
reveals that the continuation value of a player itself might not be monotonic.
Going back in time, player 3’s continuation value first increases strictly above
its limit value, and converges there from above. Hence, for a player who can
propose frequently, the deadline resulting in the highest expected payoff is an
intermediate one. If the deadline is too close, the probability of not reaching
an agreement (because of no arrival) is too high, while if the deadline is too far
out, then the player has to offer a relatively high share of the surplus to players
with lower arrival rates.

8 Discussion: extensions
Our model framework can be extended in many different directions. Some of
these are mentioned in the introduction of the paper, like considering asym-
metric information, or allowing for the game to continue after an agreement is
reached by some coalitions. We leave these investigations to future research.
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However, other interesting extensions can be incorporated into the model in a
straightforward manner. Below we discuss these.

8.1 Discounting

The presence of a deadline and random arrival times imply that our model
yields sharp predictions without introducing discounting. However, discounting
can be added easily. To see this, consider the case of group bargaining, as in
Section 3, but assume now a constant discount rate r common to all agents.
Payoffs then become wi(t) =

λi
λ+r (1 − e(λ+r)t). As before, players’ expected

payoffs are proportional to their arrival rates, and w0i(0) (more precisely, the
left-hand derivative of wi at 0) is the same as in the case without discounting
for each player i. Now, however, at the limit as the deadline gets infinitely
far away, payoffs converge to λi

λ+r instead of
λi
λ . This means that the sum of

limit expected payoffs is less than V (N) and decreasing in r. In the general
coalitional bargaining framework, a model with constant common discount rate
r can be rewritten as a model with no discount rate and an auxiliary player 0
that has arrival rate r, and in case of arrival, approaches the singleton coalition
{0} (which can be guaranteed by setting V ({0}) = V (N)).

8.2 Gradually disappearing pies

Our model assumes that the surplus that any coalition can generate stays con-
stant until a certain point of time (the deadline) and then discontinuously drops
to zero. Although there are many situations in which there is such a highlighted
point of time that makes subsequent agreements infeasible, in other cases it is
more realistic to assume that the surpluses that players can generate start de-
creasing at some point, but only go to zero gradually. For example, agreeing
upon broadcasting the games of a sports season yields diminishing payoffs once
the season started, but if there are still remaining games in the season, a fraction
of the original surplus can still be attained.
Some of our results can be extended to this framework. For example, the

case of group bargaining remains tractable when V (N) is time-dependent, even
without assuming specific functional forms. Indeed, if V (N)(t) is continuous
and nonincreasing, and there is some time t∗ at which V (N) becomes zero, our
argument for the uniqueness of SPNE payoffs applies with minor modifications.
The uniqueness of the solution to the system of differential equations still fol-
lows from the Picard-Lindelof theorem. Continuation payoff functions are then
wi(t) = λi

R∞
t

e−λ(τ−t)V (N)(τ)dτ , so payoffs remain proportional to arrival
rates at all times, and since the grand coalition always forms at an arrival, the
sum of expected payoffs across all players is simply the expected size of the pie at
the next arrival (0 after t∗). Even if we do not assume that there is a time t∗ as
above, but instead only that V (N)(t) is nonincreasing and limt→∞ V (N)(t) = 0,
the informal argument presented for the uniqueness of MPE in group bargaining
can be formalized and shown to apply to this context. In particular, one can
show that if there are two MPE yielding payoffs to a player that differ by ε > 0
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at some point of time, then there has to be a sequence of times going to infinity
such that everywhere along this sequence, expected payoffs of i differ by at least
ε. This leads to a contradiction, since after some point the whole pie is worth
less than ε. Furthermore, the same continuation payoffs apply in this case as in
the previous one.

8.3 Infinite horizon with constant pies and discounting

Without deadline, our model yields very similar results to a discrete-time model
in which a proposer is selected randomly at every period (with perhaps a positive
probability of no proposer selected). For example, in the group bargaining case
with infinite horizon and constant discount rate r, one can show that if r is
low enough, then any allocation of the surplus can be supported in SPNE.14 A
further similarity with the discrete model is that there is only one stationary
SPNE in discounted infinite-horizon group bargaining, which is characterized
by:

wi =

∞Z
0

[λie
−(λ+r)τ (1−

X
j∈N\{i}

wj) +
X

j∈N\{i}
λje
−(λ+r)τwi]dτ .

The solution of this system is wi =
λi
r+λ . This implies that as r → 0,

wi → λi
λ . That is, the limit of stationary equilibrium payoffs of the infinite-

horizon model as the discount rate goes to 0 is equal to the limit of SPNE
payoffs of the finite-horizon model as the horizon goes to infinity. In fact, the
same conclusion is true for the legislative bargaining games analyzed in Section
7. It is straightforward to verify that the limit payoffs in Theorem 7 are exactly
the limit stationary SPNE payoffs of the infinite horizon version of our game, as
the discount rate goes to 0. This is in contrast with the findings of of Norman
(2002) for discrete time legislative bargaining games.15 It is an open question
what class of coalitional bargaining problems this result can be extended to.

9 Appendix
Proof of Theorem 1: Let vi(t) and vi(t) be the supremum and the infimum,
over all SPNEs and all histories preceding t, of player i’s share when she makes
an offer at time t. Let wi(t) and wi(t) be the supremum and the infimum of

14 In particular, the type of construction in p63 of Osborne and Rubinstein (originally by
Shaked) supports even the most extreme allocation in which one player gets all the surplus.
15Norman shows that for generic specifications of the legislative bargaining game with finite

horizon there is a unique SPNE, but players’ continuation values over time in equilibrium
are typically changing in a non-monotonic way, even far away from the deadline. The paper
argues that this implies that play in longer and longer finite-horizon versions of the game
does not approximate play in stationary SPNE of the infinite horizon game, although it is
not addressed formally whether limit payoffs as the horizon goes to infinity converge to the
stationary SPNE payoffs. See also Snyder et al. for an investigation of stationary SPNE
payoffs in discrete time legislative bargaining games.
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player i’s share when player j 6= i is making an offer, over all SPNEs, histories
and j 6= i.
Let λ =

Pn
i=1 λi. Note that the density of i getting the next arrival of any

player, at a time x units from now, is λie−λx.
First, note that vi(t) +

P
j 6=i wj(t) = 1, since this will be true in an SPNE

where i offers everyone wj(t) and takes the rest, and where, if any such offer
by i is rejected, we move to a SPNE giving a continuation value of wj(t) to the
first rejector.
Consider the following profile: when any player k 6= i makes an offer, the

offer to player i must be wi(t), and the offer to all j 6= i, k is at least wj(t). If k
offers less to any player, the offer is rejected by that player; if player j 6= i, k is
the rejector, we move to an SPNE giving player k an expected payoff of wk(t),
and if player i is the rejector, we move to an SPNE giving player i an expected
payoff of wi(t). If k makes the correct offer and player j is the first rejecting
the offer, then we move to an equilibrium giving wj(t) to j. When i makes an
offer, she gives herself vi(t) and gives wj(t) to all j 6= i, as specified above.
To show that the exhibited profile is an SPNE, we need to verify that it

indeed exists, i.e. that offers are feasible. Note that player k’s offer is feasible if
wi(t)+

P
j 6=i wj(t) ≤ 1. But this must be true since the sum of all continuation

values in any SPNE must be less than 1. As established above, player i’s offer
is feasible. We also need to check that players’ actions are optimal. The only
case where this is not trivial is that when k makes an offer, she may prefer
to make one that is rejected by i. However, this will not be the case in an
interval close to 0 where the probability of any future arrival ≤ 1

n , since then
wk(t) ≤ 1

n = 1−
n−1
n ≤ 1−

P
i6=k wi(t), so k will want the offer to be accepted.

Denote this interval [s, 0] (so s = 1
λ ln(

n−1
n )).

The above profile is of course the best possible one for i, so on [s, 0] we have:

wi(t) =

Z 0

t

⎡⎣λie−λ(τ−t)vi(τ) +X
j 6=i

λje
−λ(τ−t)wi(τ)

⎤⎦ dτ
=

Z 0

t

⎡⎣λie−λ(τ−t)(1−X
j 6=i

wj(τ)) +
X
j 6=i

λje
−λ(τ−t)wi(τ)

⎤⎦ dτ

26



Since wi(t) is the integral of a continuous function, its derivative exists, so:

wi
0(t) = −λi(1−

X
j 6=i

wj(t))−
X
j 6=i

λjwi(t)

+λ

Z 0

t

⎡⎣λie−λ(τ−t)(1−X
j 6=i

wj(τ)) +
X
j 6=i

λje
−λ(τ−t)wi(τ)

⎤⎦ dτ
= −λi(1−

X
j 6=i

wj(t))−
X
j 6=i

λjwi(t) + λwi(t)

= λi(wi(t)− 1 +
X
j 6=i

wj(t))

Similarly, we note that vi(t)+
P

j 6=i wj(t) = 1 on [s, 0], since this occurs when
i offers everyone wj(t) and takes the rest, and where, if i gives any less than
wj(t) to a player, we move to a SPNE giving a continuation value of wj(t) to
the first rejector. On [s, 0], wj(t) and the probability of a future arrival are close
to 0, so it will be optimal for i to make such an offer. By a similar argument as
above, we can show that:

wi
0(t) = λi(wi(t)− 1 +

X
j 6=i

wj(t))

Thus on a nontrivial interval [s, 0], we have a system of 2n differential equa-
tions continuous in t, and Lipschitz continuous in 2n unknown functions with
initial values wi(0) = wi(0) = 0. By the Picard-Lindelof theorem, this initial
value problem has a unique solution. It is easy to check that the following
functions constitute the solution:

wi(t) = wi(t) =
λi
λ
(1− eλt) ≡ wi(t)

The above argument can be iterated for [2s, s] since the game ending at s
with payoffs wi(s) is simply a scaled version of the original game, and so on.
QED

Proof of Theorem 2: For any k ∈ Z+, let Gk denote the following discrete
time game:
There are k periods. In each period there is an arrival with probability

1− e−λ
T
k . The relative probabilities of which player gets the arrival (if there is

one) are λ1, ..., λN .
A simple argument shows that in every SPNE of Gk, in period k every player

approaches N and offers 0 to everyone in N\{i}.
For each of these games, there exists an SPNE in pure strategies. Such a

profile can be constructed as follows:
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Denote the coalition player i approaches in period m by Ck
i (m). Let w

k
i (m)

denote the continuation payoff of i if no agreement was made in 1, ...,m− 1.
For every i ∈ N , let wk

i (k + 1) = 0.
Suppose now that Ck

i (m) and wk
i (m) are defined for every m > k0, where

k0 ∈ {1, ..., k}. For any i ∈ N , define Ck
i (k

0) such that Ck
i (k

0) ∈ argmax
C⊂N :i∈C

V (C)−P
j∈C\{i}

wk
j (k

0 + 1) (if there are multiple C like that, then select any of them).

For every i, j ∈ N , define Ik,k
0

ij the indicator function that takes value 1 if
j ∈ Ck

i (k
0), and 0 otherwise. Finally, define

wk
i (k

0) =
λi
λ
e−λ

T
K [V (Ck

i (k
0))−

X
j∈C\{i}

wk
j (k

0 + 1)]

+
X

j∈N\{i}

λj
λ
e−λ

T
K Ik,k

0

ji wk
i (k

0 + 1) + (1− e−λ
T
K )wk

i (k
0 + 1).

The above procedure iteratively defines Ck
i (m) and wk

i (m) ∀ i ∈ N and
m ∈ {1, ..., k}.
It is easy to see that the following strategies constitute an SPNE: player i

at period m approaches Ck
i (m) and offers w

k
j (m + 1) to every j ∈ Ck

i (m)\{i}.
If player i is approached at period m by any other player, then she accepts the
offer if it is at least wk

j (m+ 1), and rejects it otherwise.
Denote the above-defined strategy profile in Gk by sk.
Based on sk, for every i ∈ N, define strategy bski of i in G, the following way:
If i gets an arrival at t = − (k−m−α)Tk for α ∈ (0, 1] and m ∈ {0, ..., k − 1}

(or α = m = 0 for t = −T ), she approaches Ck
i (m + 1) and offers wk

j (m + 2)

(as defined in Gk) to every j ∈ Ck
i (m + 1)\{i}. If player i is approached at

t = − (k−m−α)Tk for α ∈ (0, 1] and m ∈ {0, ..., k − 1} (or α = m = 0) by any
player, then she accepts the offer if and only if it is at least wk

i (m + 2). (For
ease of exposition, we will omit the α = m = 0 from the argument below.)
Define the expected continuation value of player i at time t according to

the above profile in G by bwk
i (t). First, note that given bsk−i, strategy bski specifies

an optimal action for i if she has an arrival, at every t ∈ [−T, 0]. Next, we
bound the suboptimality of bski when i considers an offer. Observe that by
construction, at any time t = − (k−m)Tk form ∈ {0, ..., k−1}, bwk

i (t) = wk
i (m+1).

Moreover, for t = − (k−m−α)Tk , bwk
i (t) → wk

i (m + 2) as α % 1. Given that bsk
is Markovian, the optimal action for i in G if she is approached by any other
player at t = − (k−m−α)Tk for α ∈ (0, 1] and m ∈ {0, ..., k − 1} is, independently
of payoff-irrelevant history, to accept the offer if it is at least bwk

i (t), and reject it
otherwise. Instead, strategy bski specifies that i accepts the offer if and only if it is
at least wk

j (m+2); hence, after some histories, bski specifies a suboptimal action
for i. However, since bwk

i (t) is between w
k
j (m+1) and wk

j (m+2), the difference
between the expected payoff resulting from following bski versus choosing the
optimal action at t is bounded by

¯̄
wk
j (m+ 1)− wk

j (m+ 2)
¯̄
. Given that the
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probability of an arrival between t = − (k−m)Tk and t = − (k−m−1)Tk is 1−e−λ k
T ,¯̄

wk
j (m+ 1)− wk

j (m+ 2)
¯̄
≤ V (N)(1 − e−λ

k
T ). This means that for any ε > 0,

there is a kε ∈ Z+ such that for any k > kε, bsk specifies an ε-perfect equilibrium
of G (which is also Markovian, by construction).
Consider now continuation payoff functions bwk

i () for i ∈ N . Define btk(τ) =§
(T + τ) kT

¨
. By construction,

bwk
i (t) =

0Z
t

[λie
−λ(τ−t)

⎛⎝V [Ck
i (btk(τ))]− X

j∈Ck
i (t

k(τ))\{i}

wk
j (btk(τ) + 1)

⎞⎠
+
X
j 6=i

λje
−λ(τ−t)wk

i (btk(τ) + 1)]dτ .
It is easy to see that for every i ∈ N and k ∈ Z+, bwk

i () is Lipschitz-continuous
with Lipschitz constant λV (N). Moreover, all bwk

i () are uniformly bounded by
0 below and V (N) above. Therefore, by the Ascoli-Arzela theorem (see Royden
(1988), p169), the sequence of functions ( bwk

1(), ..., bwk
N ()) has a subsequence that

converges uniformly to functions ( bw∗1(), ..., bw∗N ()), as k → ∞. Moreover, these
functions are also Lipschitz-continuous with the same constant. Without loss of
generality, assume that the original sequence is convergent.
Take now any t ∈ [−T, 0], and any C ⊂ N such that for every k0 ∈ Z+,

there exists k > k0 such that Ck
i (btk(t)) = C (that is, C is approached by i at t

according to bski ). Recall that for every ε > 0, there exists kε ∈ Z+ such that for
every k > kε, bsk is an ε-perfect profile, and ( bwk

1(), ..., bwk
N ())→ ( bw∗1(), ..., bw∗N ()).

Thus, if continuation payoffs at t are given by bw∗1(t), ..., bw∗N (t), then it is optimal
for i to approach C and offer bw∗j (t) to everyone in C\{i}, and accepting this
offer is optimal for players in C\{i}.
For any t ∈ [−T, 0], let nk(t) = [−T, 0]∩ [t− 1

k , t+
1
k ], so that ∩

k=1,2,...
nk(t) =

{t}. For any i ∈ N, let pki (t) ∈ ∆(2N ) be defined such that pki (t)(C) =
L({x∈nk(t):ŝki (x)=C})

|nk(t)| , where L() stands for the Lebesgue measure. Note that

the set {x ∈ nk(t) : ŝki (t) = C} is measurable by construction. Since ∆(2N ) is
compact, the sequence (pki (t))k=1,2,... has a convergent subsequence. Take any
convergent subsequence and denote the limit by p∗i (t).
Now define strategies s∗i for all i ∈ N as follows: for any t ∈ [−T, 0], if i

has an arrival at t, then she approaches C ⊂ N with probability p∗i (t)(C) and
offers bw∗j (t) to every j ∈ C\{i}; if i is approached at t by any other player,
then she accepts the offer if and only if it is at least bw∗i (t). Observe that if
p∗i (t)(C) > 0, then there is k > k0 such that pki (t)(C) > 0 ∀ k0 ∈ Z+. Since
for every ε > 0, there is kε ∈ Z+ such that for every k > kε, bsk is an ε-
perfect profile, ∩

k=1,2,...
nk(t) = {t}, bwk

1() goes to bw∗1() uniformly as k →∞, andbw∗1() is continuous, it has to be that approaching C and offering bw∗j (t) to every
j ∈ C\{i} is the optimal action for i if other players play according to s∗−i.
Moreover, if continuation values are indeed given by bw∗i (t) ∀ i ∈ N , then it is
optimal for i to accept an offer if and only if it is at least bw∗i (t).
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All that remains to be shown is that s∗ generates continuation payoffs bw∗i (t)
for every i ∈ N and t ∈ [−T, 0]. To see this, first note that since the func-
tions bwk

1(), ..., bwk
N () are Lipschitz-continuous for every k ∈ Z+, they are almost

everywhere differentiable. The same holds for bw∗1(), ..., bw∗N (). Hence, for almost
every t ∈ [−T, 0], both bw∗1(), ..., bw∗N() and bwk

1(), ..., bwk
N () for all k ∈ Z+ are dif-

ferentiable at t. Consider any such t. Since bsk generates continuation payoffsbwk
1 (), ..., bwk

N (), the construction of s
∗ implies that the derivative at t of the con-

tinuation payoff of any i ∈ N generated by s∗ is equal to the derivative of bw∗i ()
at t. Since this holds for almost all t ∈ [−T, 0], and the continuation payoff of
i ∈ N at t = 0 generated by any strategy is equal to bw∗i (0) = 0, the profile s∗
indeed generates continuation payoffs bw∗1(), ..., bw∗N ().
This establishes that s∗ is an SPNE. By construction, it is Markovian. QED

Proof of Claim 1: Note that
P
j∈N

wj(t) ≤ 1 − eλt, where eλt > 0 is the

probability that no one has the chance to make an offer during [t, 0]. Further-
more, in any MPE, if C ⊂ N is approached by i at t, and every j ∈ N\{i} is
offered strictly more than wj(t), then the offer has to be accepted by everyone
with probability 1. Therefore, player i can guarantee a payoff strictly larger
than wi(t) by approaching N and offering wj(t) + ε to every j ∈ N\{i} for
small enough ε > 0. On the other hand, a rejected offer results in continua-
tion payoff wi(t) for i. Next, note that approaching a coalition C and offering
strictly less than wj(t) to some j ∈ C results in rejection of the offer with
probability 1, and is therefore not optimal. Approaching a coalition C and
offering wj(t) + ε for ε > 0 to some j ∈ C is also suboptimal, because offer-
ing instead wj(t) + ε/N to every j ∈ C\{i} results in acceptance of the offer
with probability 1 and strictly higher payoff. Therefore, whatever coalition C
is approached, player i has to offer exactly wj(t) to every j ∈ C\{i}. It cannot
be that this offer is accepted with probability less than 1, since then player i
could strictly improve her payoff by offering slightly more than wj(t) to every
j ∈ C\{i}, since that offer would be accepted with probability 1. Finally, it
cannot be that C /∈ argmax

D⊂N
V (D) −

P
j∈D\{i}

wj , since then approaching some

C 0 ∈ argmax
D⊂N

V (D) −
P

j∈D\{i}
wj instead, and offering slightly more than wj(t)

to every j ∈ C0\{i} would result in a strictly higher payoff. QED

Proof of Theorem 3: The proof requires the introduction of some extra

notation. Let vi(t) = maxC3i

⎧⎨⎩v(C)−
X

j∈C\{i}
wj(t)

⎫⎬⎭. Also, let pij(t) be the
probability of j receiving an offer at time t given that i gets an arrival at that
time, and let piC(t) be the probability of C (and only C) receiving an offer at
time t given that i gets an arrival at that time.
We proceed by contradiction. Suppose two MPEs, A and B, of the same

bargaining game with characteristic function V and arrival rates (λ1, ..., λn) do
not have the same continuation value functions.
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First note that if λi = 0, the only possible MPE continuation value for i is
0 at all times. The game is then equivalent to an alternative game with players
N\{i} and characteristic function V 0(C) = V (C ∪ {i}),∀C ⊂ N\{i}. So we
assume without loss of generality that λi > 0,∀i ∈ N .
Let t = min{τ |fi(t0) = 0,∀t0 ∈ [τ , 0],∀i ∈ N}. Note that t < 0 since

there must be some nontrivial interval where proposing to a coalition of value
V (N) is strictly optimal for everyone. When the only such coalition is N , MPE
payoffs are clearly unique within this interval; the same can be shown if multiple
coalitions have value V (N).16 Thus we have wi(t) > 0.
Define fi(τ) = wA

i (τ)− wB
i (τ), and note that fi(τ) is Lipschitz continuous.

For τ < t, let Fi(τ) = maxt0∈[τ,t] |fi(t0)|, so Fi(τ) is Lipschitz continuous and
nonincreasing.
Let I(τ) = argmaxi Fi(τ), and let S = {t0|FI(t0)(t0) =

¯̄
fI(t0)(t

0)
¯̄
and t0 < t}.

Note that for all τ < t, S ∩ [τ , t) 6= ∅.
Define gj(τ) =

X
i6=j

λip
A
ij(τ)−

X
i6=j

λip
B
ij(τ). Note that since we are considering

equilibria, continuation value functions exist, which implies that
R t
τ
gj(t

0)dt0

exists for all τ < t.
Lemma 1: Let g(.) be an integrable function taking values between −K

and K, and let h(.) ≥ 0 be Lipschitz continuous with Lipschitz bound L. Then¯̄̄R t
τ
g(t0)h(t0)dt0 − h(t)

R t
τ
g(t0)dt0

¯̄̄
< 2L(t− τ)maxτ 0∈[τ,t]

¯̄̄R t
τ 0 g(t

0)dt0
¯̄̄
.

Proof: Suppose
R t2
t1

g(t0)dt0 = 0 and
¯̄̄R t2
τ

g(t0)dt0
¯̄̄
≤ C for all τ ∈ [t1, t2].

Then
¯̄̄R t2
t1

g(t0)h(t0)dt0
¯̄̄
< LC(t2− t1), as the maximum corresponds to the case

where h(τ) follows a Lipschitz bound, g(τ) = K for τ ∈ [max{t2− C
K , t1+t22 }, t2],

g(τ) = −K for τ ∈ [t1,min{t1 + C
K , t1+t22 }], and g(τ) = 0 for τ ∈ (min{t1 +

C
K , t1+t22 },max{t2 − C

K , t1+t22 }).
Now partition [τ , t] into measurable sets A and B, where

R
S
g(t0)dt0 = 0 for

any connected set S ⊂ A and
R
U
g(t0)dt0 has the same sign as

R t
τ
g(t0)dt0 for

any connected set U ⊂ B. Then we have
¯̄̄R t
τ
g(t0)h(t0)dt0 − h(t)

R t
τ
g(t0)dt0

¯̄̄
≤¯̄R

A
g(t0)h(t0)dt0

¯̄
+
¯̄R
B
g(t0)h(t0)dt0 − h(t)

R
B
g(t0)dt0

¯̄
< LC(t−τ)+L(t−τ)

¯̄̄R t
τ
g(t0)dt0

¯̄̄
,

where C = maxτ 0∈[τ,t]
¯̄̄R t
τ 0 g(t

0)dt0
¯̄̄
. QED

Lemma 2: ∀ε > 0, ∃τ ∈ [t− ε, t) such that
P

j∈N

h
fj(τ)

R t
τ
gj(t

0)dt0
i
> 0.

16Note that at t = 0, the left derivative of continuation value functions must exist since
wi(0) = 0 (so the probability of being proposed to given an arrival, which may be discon-
tinuous, does not affect the rate of change of wi). In fact, we have w0i(0) = −λiV (N). So
when there are coalitions C1, ..., Cm 6= N with i ∈ Cj and V (Cj) = V (N) for j = 1, ...,m, it
must be true that in a neighborhood of 0, i only proposes to Ck with positive probability if

l∈Ck λl ≤ i∈Cj λl for j = 1, ...,m. When there are multiple such coalitions, if feasible,
they will be proposed to such that their continuation values are equalized; if equalization
cannot be achieved, those having the choice between many such coalitions will propose to the
cheapest one.
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Proof: Note that:

fj(τ) =

tZ
τ

e−λ(t
0−τ)

⎡⎢⎢⎢⎢⎢⎢⎣
λj(v

A
j (t

0)− vBj (t
0)) + (wA

j (t
0)− wB

j (t
0))

⎛⎝X
i6=j

λip
A
ij(t

0)

⎞⎠
+wB

j (t
0)

⎛⎝X
i6=j

λip
A
ij(t

0)−
X
i6=j

λip
B
ij(t

0)

⎞⎠

⎤⎥⎥⎥⎥⎥⎥⎦ dt
0

= λj

Z t

τ

e−λ(t
0−τ) £vAj (t0)− vBj (t

0)
¤
dt0 +

Z t

τ

e−λ(t
0−τ)fj(t

0)

⎛⎝X
i6=j

λip
A
ij(t

0)

⎞⎠ dt0

+

Z t

τ

e−λ(t
0−τ)wB

j (t
0)gj(t

0)dt0

So we have:¯̄̄̄
fj(τ)−

Z t

τ

e−λ(t
0−τ)wB

j (t
0)gj(t

0)dt0
¯̄̄̄
≤ λ(t− τ)

X
i∈N\{j}

Fi(τ) + λ(t− τ)Fj(τ)

= λ(t− τ)
X
i∈N

Fi(τ)

Also, by Lemma 1,¯̄̄R t
τ
gj(t

0)dt0 − eλ(t−τ)

wBj (t)

R t
τ
e−λ(t

0−τ)wB
j (t

0)gj(t
0)dt0

¯̄̄
< 2Lj(t− τ)maxτ 0∈[τ,t]

¯̄̄R t
τ 0 e
−λ(t0−τ)wB

j (t
0)gj(t

0)dt0
¯̄̄

≤ 2Lj(t− τ)
¡
Fj(τ) + λ(t− τ)

P
i∈N Fi(τ)

¢
where Lj , the Lipschitz constant for eλ(t−τ)

wBj (t)
, is finite when wB

j (t) 6= 0. Com-
bining this with the above yields:¯̄̄̄

fj(τ)−
wBj (t)

eλ(t−τ)

R t
τ
gj(t

0)dt0
¯̄̄̄

< λ(t− τ)
P

i∈N Fi(τ) + 2
wBj (t)

eλ(t−τ)
Lj(t− τ)

¡
Fj(τ) + λ(t− τ)

P
i∈N Fi(τ)

¢
≤ (λ+ 2LjwB

j (t))
P

i∈N Fi(τ)(t− τ) + 2λLjw
B
j (t)

P
i∈N Fi(τ)(t− τ)2

≡
P

i∈N Fi(τ)(t− τ)(kj + qj(t− τ))

For (t− τ) small enough, qj(t− τ) is negligible, so we omit it below. Thus:

fj(τ)
wB
j (t)

eλ(t−τ)

Z t

τ

gj(t
0)dt0 ≥ [fj(τ)]2 − kj(t− τ)

X
i∈N

Fi(τ) |fj(τ)|

We have that for all τ ∈ S:

fj(τ)

Z t

τ

gj(t
0)dt0 ≥ 1

wB
j (t)

³
[fj(τ)]

2 − kj(t− τ)n
¯̄
fI(τ)(τ)

¯̄
|fj(τ)|

´
So ∀ τ ∈ (t−

√
minj{1,wBj (t)}
2n2maxj kj

, t) ∩ S:
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fj(τ)

Z t

τ

gj(t
0)dt0 >

1

wB
j (t)

Ã
[fj(τ)]

2 − |fj(τ)|
¯̄
fI(τ)(τ)

¯̄
2n

q
wB
j (t)

!

≥ −
¯̄
fI(τ)(τ)

¯̄2
16n2

and so fI(τ)(τ)
R t
τ
gI(τ)(t

0)dt0 ≥ |fI(τ)(τ)|
2

2 .

Thus,
P

j∈N fj(τ)
R t
τ
gj(t

0)dt0 >
7|fI(τ)(τ)|2

16 . The result follows since for all
τ < t, S ∩ [τ , t) 6= ∅. QED
Now let fC,C0(τ) ≡ fC(τ)−fC0(τ) ≡

P
i∈C fi(τ)−

P
i∈C0 fi(τ), and Zt0(τ) ≡P

j∈N

h
fj(t

0)
R t
τ
gj(s)ds

i
. So we know that ∀ε > 0, ∃t0 ∈ [t − ε, t) such that

Zt0(t
0) > 0.
Since Zt0(τ) and fC,C0(τ) are continuous in τ , and Zt0(t) = 0, we have that

for all ε > 0, there must exist a nontrivial interval [t0, t00] ∈ [t−ε, t] where Zt0(τ)
is strictly decreasing, and fC,C0(τ) do not change sign, for all (C,C0) ∈ 2N×2N .
Then 0 < Zt0(t

0)− Zt0(t
00) =

P
j∈N

h
fj(t

0)
R t00
t0 gj(s)ds

i
.

In the rest of the proof, we will show that
P

j∈N

h
fj(t

0)
R t00
t0 gj(s)ds

i
≤ 0,

which gives us the desired contradiction.
Let O : 2N\∅ → {1, 2, ..., 2n − 1}. We will use this ordering of coalitions

to define shifts of proposals from a coalition to another in an intuitive (but
cumbersome) way. Define giC(τ) = pAiC(τ) − pBiC(τ). Let the sequences (or-
dered according to O) A0i (t) = {C ∈ 2N\∅|giC(τ) > 0} and B0

i (t) = {C ∈
2N\∅|giC(τ) < 0}. Let g0iC(τ) = |giC(τ)|. Denote the kth element of A0i (t)
as A0i (t)k, and similarly for the other sequence. If g

k
iAki (t)1

(τ) > gk
iBk

i (t)1
(τ),

let Ak+1
i (t) = Ak

i (t), and Bk+1
i (t) be such that Bk+1

i (t)m = Bk
i (t)m+1 (so

Bk+1
i (t) is one element shorter than Bk

i (t); this will be referred to as "shifting
Bk
i (t)"); if g

k
iAki (t)1

(τ) < gk
iBk

i (t)1
(τ), shift Ak

i (t), but leave B
k
i (t) unchanged; if

gk
iAki (t)1

(τ) = gk
iBk

i (t)1
(τ), shift both sequences. Then define:

gk+1iC (τ) =

⎧⎪⎨⎪⎩
gkiC(τ)− gk

iBk
i (t)1

(τ) if C = Ak
i (t)1 and gk

iAki (t)1
(τ) > gk

iBk
i (t)1

(τ)

gkiC(τ)− gk
iAki (t)1

(τ) if C = Bk
i (t)1 and gk

iAki (t)1
(τ) < gk

iBk
i (t)1

(τ)

gkiC(τ) otherwise

⎫⎪⎬⎪⎭
Now define:

giC,C0(τ) =

⎧⎨⎩ min{gkiC(τ), gkiC0(τ)} if C = Ak
i (t)1 and C 0 = Bk

i (t)1 for some k
−min{gkiC(τ), gkiC0(τ)} if C = Bk

i (t)1 and C0 = Ak
i (t)1 for some k

0 otherwise

⎫⎬⎭
Finally, let gC,C0(τ) =

P
i∈N λigiC,C0(τ). Observe that gC,C0(τ) has a simple

interpretation: it measures the frequency of proposals gained by coalition C
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from C0 in equilibrium A relative to equilibrium B. It is easy to verify thatP
C0∈2N gC,C0(τ) = −

P
C0∈2N gC0,C(τ) ≡ gC(τ), and gi(τ) =

P
CÄi gC(τ).

By optimality, it is clear that fC,C0(τ)gC,C0(τ) ≤ 0, for all C,C 0 ∈ 2N and

τ < 0. Since fC,C0(τ)maintain their sign in [t0, t00], we have: fC,C0(t0)
R t00
t0 gC,C0(s)ds ≤

0. Now note that:

X
(C,C0)∈2N×2N

fC,C0(t0)

Z t00

t0
gC,C0(s)ds =

P
(C,C0)∈2N×2N fC(t

0)
R t00
t0 gC,C0(s)ds

−
P

(C,C0)∈2N×2N fC0(t0)
R t00
t0 gC,C0(s)ds

=
X
C∈2N

fC(t
0)

Z t00

t0
gC(s)ds+

X
C0∈2N

fC0(t0)

Z t00

t0
gC0(s)ds

= 2
X
C∈2N

ÃX
i∈C

fi(t
0)

Z t00

t0
gC(s)ds

!

= 2
X
i∈N

fi(t
0)

ÃX
CÄi

Z t00

t0
gC(s)ds

!

= 2
X
i∈N

fi(t
0)

Z t00

t0
gi(s)ds

Thus,
P

i∈N fi(t
0)
R t00
t0 gi(s)ds ≤ 0, which completes the contradiction. QED

Proof of Theorem 4: The statement holds vacuously if C(V ) = ∅, so
we assume C(V ) 6= ∅. Normalize payoffs with V (N) = 1. Let x ∈ C(V ), and
set λi = xi. For any T > 0, consider continuation value functions wi(t) =
λi(1− et),∀ t ∈ [−T, 0], i ∈ N , and specify strategies as follows:
For every i ∈ N , if player i gets the chance to make an offer at t ∈ [−T, 0],

she approaches the grand coalition and offers exactly wj(t) to every j ∈ N\{i}.
If player i gets approached at t, then independently of who approached her and
what coalition was approached, she accepts the offer if and only if she is offered
at least wi(t).
We will show that the strategies specified above comprise a subgame perfect

equilibrium, in which expected payoffs are given by xi(1− et) for every i ∈ N .
First, note that if no offer gets accepted at t, and afterwards everyone plays
according to the prescribed strategies, then the expected continuation payoff of
player j is:

0R
t

[λje
−λ(τ−t)(1−

P
k 6=j

λk(1− eτ )) +

ÃP
k 6=j

λk

!
e−λ(τ−t)λj(1− eτ )]dτ = wj(t).

In particular, the expected payoff of player j at the beginning of the game is
wj(−T ) = xj(1− e−T ).
Second, note that given other players’ strategies, the best offer player i can

give to the grand coalition is the one specified above, and since 1−
P
j 6=i

wj(t) =

wi(t) + et > wi(t), it yields a higher payoff than giving an unacceptable offer.
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Next, note that wj(t) ≤ xj ∀ t ∈ [−T, 0] and j ∈ N . Since x ∈ C(V ), this
implies that

P
j∈C

wj ≤ V (N)−V (N\C) for any C ⊂ N . Given others’ strategies,

this means that there is no C ⊂ N such that player i could give an acceptable
offer to coalition N\C and get a strictly higher payoff than what she obtains
when following the strategy prescribed above.
We conclude that no player can profitably deviate, given the above profile,

at any point where it is her turn to make an offer.
If player i ∈ N is approached by another player at t, then rejecting the offer

results in continuation payoff wi(t), which means that it is optimal to reject the
offer when it is not above wi(t), and it is optimal to accept the offer when it is
not below wi(t). Hence, the strategy prescribed above is optimal for i.
Thus, there exists a SPNE such that expected payoffs are given by xi(1−eT )

for every i ∈ N .
Showing that any subgame perfect equilibrium yields the same expected

payoffs as the one specified above is similar to showing uniqueness of subgame
perfect equilibrium payoffs in the N -player group bargaining game.
Finally, note that as T →∞, the expected SPNE payoff of player i goes to

xi. QED

Proof of Claim 2: First, note that for any i ∈ N and any t ≤ 0,
wi(t) < V ({i}) implies that V (C ∪ {i}) − wi(t) > V (C) for any i /∈ C. This
and Lemma 0 imply that at any time such that wi(t) < V ({i}) in a Markov
perfect equilibrium, any player j ∈ N will include player i in the approached
coalition at an arrival, and offer her exactly wi(t). Furthermore, note that if
player i has the chance to make an offer at t, then she can guarantee a payoff of
at least V ({i}) by approaching herself. This implies that wi(t) is bounded be-

low by
0R
t

[λie
−λ(τ−t)V ({i})+

P
j 6=i

λje
−λ(τ−t)wi(τ)]dτ , which implies that wi(t) ≥

V ({i})(1 − eλit) in every MPE. Therefore, if T1(ε) = min
i∈N

1
λi
ln ε

V ({i}) , then for

any t ≤ T1(ε) and i ∈ N , wi(t) ≥ V ({i})− ε, for every ε > 0.
Assume now that for some K ∈ {1, ..., n− 1}, there exists a finite TK(ε) for

any ε > 0 such that for every C ⊂ N with |C| ≤ K, it holds that
P
i∈C

wi(t) ≥

V (C) − ε, ∀ t ≤ TK(ε). Below we show that this implies that for any ε > 0,
there exists a finite TK+1(ε) such that for every C ⊂ N with |C| ≤ K + 1, it
holds that

P
i∈C

wi(t) ≥ V (C) − ε, ∀ t ≤ TK+1(ε). Fix any ε > 0 and any C

with |C| = K + 1. >From the induction assumption,
P
i∈C0

wi(t) ≥ V (C 0)− ε/2,

∀ t ≤ TK(ε/2) and C 0 $ C. Consider now any t ≤ TK(ε/2) and assume
that

P
i∈C

wi(t) < V (C) − ε. Suppose that there is i ∈ N such that i does not

approach everyone in C with probability 1 at t. Let D be such that there
is a positive probability that D is approached at t by i, and C * D. Since
t ≤ TK(ε/2),

P
i∈C∩D

wi(t) ≥ V (C ∩ D) − ε/2. Then
P
i∈C

wi(t) < V (C) − ε
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implies
P

i∈C\D
wi(t) < V (C) − V (C ∩ D) − ε/2. Convexity of V then impliesP

i∈C\D
wi(t) < V (D ∪ C) − V (D). By Lemma 0, i could strictly improve her

payoff by approaching D ∪ C instead of D, a contradiction. Therefore, for any
C ⊂ N for which |C| ≤ K+1,

P
i∈C

wi(t) < V (C)−ε and t ≤ TK(ε/2) imply that

everyone in C is approached by every player at t with probability 1. Therefore,
for t ≤ TK(ε/2),

P
i∈C

wi(t) is bounded below by min(V (C) − ε, k(t)), where

k(t) =
TK(ε/2)R

t

"µP
i∈C

λi

¶
e−λ(τ−t)V (C) +

ÃP
j /∈C

λj

!
e−λ(τ−t)wi(τ)

#
dτ . Thus,

there exists TC
K+1(ε) such that

P
i∈C

wi(t) ≥ V (C)− ε, ∀ t ≤ TC
K+1(ε). Then for

TK+1(ε) = min

½
min

C:|C|=K+1
TC
K+1(ε), TK(ε)

¾
, for every C ⊂ N with |C| ≤ K+1,

it holds that
P
i∈C

wi(t) ≥ V (C)− ε, ∀ t ≤ TK+1(ε).

The claim follows by induction. QED

Proof of Theorem 5: Fix a convex V , and let T 1, T 2, ... −→ ∞ and
t1, t2, ... −→ −∞ such that tk ≥ −T k ∀ k ∈ Z+. For every k ∈ Z+, let wk(tk)
be the continuation payoff vector at tk of an MPE of the bargaining game with
time horizon T k, and assume wk(tk) → w∗. By Claim 2,

P
i∈C

w∗i ≥ V (C) ∀

C ⊂ N . In particular,
P
i∈N

w∗i ≥ V (N). Also, since
P
i∈N

wk
i (t

k) ≤ V (N) ∀

k ∈ Z+,
P
i∈N

w∗i ≤ V (N). Combining the above yields w∗ ∈ C(V ). QED

Proof of Theorem 6: First we establish the following lemma:
Lemma 3: In a MPE, suppose ∃T ∗ s.t. ∀t < T ∗, player i is proposed to with

probability 1 when any player j ∈ N\{i} makes an offer, and that λj > 0,∀j.
Then if the core is nonempty and limt→−∞wj(t) ≡ wj exists for each j ∈ N ,
the limit allocation (w1, w2, ..., wn) is in the core.
Proof: ∀t < T ∗, we know that wi(t) ≥

R T∗
t

e−λ(τ−t)[λi(V (N)−
P

j 6=i wj(τ))+
(λ−λi)wi(τ)]dτ because by Lemma 0, player i can always get V (N)−

P
j 6=i wj(τ)

by proposing to the grand coalition, and j 6= i will always offer wi(t) to
player i. Let T ∗∗ be such that |wj(t) − limt→−∞wj(t)| < ελi

2λn ,∀t < T ∗∗

and j ∈ N , and let eT = min{T ∗, T ∗∗}. Then ∀t < eT , we have wi(t) ≥R T
t
e−λ(τ−t)[λi(V (N)−

P
j 6=i wj − ελi(n−1)

2λn ) + (λ− λi)(wi(t)− ελi
λn )]dτ =

1
λ(1−

e−λ(T−t))[λi(V (N)−
P

j 6=i wj − ελi(n−1)
2λn ) + (λ− λi)(wi(t)− ελi

λn )]. This implies
λ−(1−e−λ(τ−t))(λ−λi)

λi(1−e−λ(τ−t)) wi(t) > V (N)−
P

j 6=i wj − ε. Taking the limit as t→ −∞
gives wi ≥ V (N) −

P
j 6=i wj − ε, or

P
j∈N wj ≥ V (N) − ε. Letting ε → 0

yields
P

j∈N wj ≥ V (N). Of course, we also know that
P

j∈N wj ≤ V (N), soP
j∈N wj = V (N).
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Let {Di}mi=1 be the set of all coalitions satisfying V (Di) = V (N). Let
D = ∩mi=1Di. Thus if C + D, V (C) < V (N). Let pC(t) be the probabil-
ity that if someone makes an offer at time t, it is made to coalition C, and
let pj(t) be the probability that j is part of a coalition receiving an offer.

We have V (N) =
P

j∈N wj = limt→−∞
R 0
t
e−λ(τ−t)

³P
C⊆N pC(τ)V (C)

´
dτ =P

C⊆N V (C)
³
limt→−∞

R 0
t
e−λ(τ−t)pC(τ)dτ

´
. It follows that:

mX
i=1

µ
lim

t→−∞

Z 0

t

e−λ(τ−t)pDi
(τ)dτ

¶
= 1

so limt→−∞
R 0
t
e−λ(τ−t)pj(τ)dτ = 1,∀j ∈ D.

Suppose the limit allocation is not in the core. Then ∃C $ N such thatP
j∈C wj < V (C). Thus ∃TN such that ∀t < TN , each member k ∈ C re-

ceives at least wk + ε when she proposes because she could propose to C. This
yields a contradiction when C ∩D 6= ∅ by an argument similar to that in the
first paragraph of the proof, using the fact that a player j ∈ C ∩ D will have
limt→−∞

R 0
t
e−λ(τ−t)pj(τ)dτ = 1 (her limit payoff would have to exceed wj). If

C∩D = ∅, then by superadditivity, since V (D) = V (N) ≥ V (C∪D), it follows
that V (C) = 0, so it is impossible that

P
j∈C wj < V (C). QED

Proof of theorem: Let f(C) ≡ V (C)−
P

j∈C wj , and R = maxC⊆N f(C).
If R ≤ 0, then we are done, so assume R > 0. Let S = argmaxC⊆N f(C) =
{Si}mi=1. Note that Si ∩ Sj 6= ∅,∀1 ≤ i 6= j ≤ m, since otherwise f(Si ∪ Sj) ≥
f(Si) + f(Sj) > f(Si), f(Sj). Also note that ∃T ∗ s.t. ∀t < −T ∗, if j proposes
to a coalition C with positive probability, then C ∩ Si 6= ∅,∀1 ≤ i ≤ m, since
otherwise j would do strictly better by proposing to C ∪ Si.
Clearly, if |Si| = 1 for some i, then we are done by Lemma 3, as there is a

time before which everyone proposes to the player in Si with probability 1.
Now suppose |S1| = 3. If |S| = 1, 2 or 3, then it is easy to see that we are done

again by Lemma 3. Thus we need to study case A: S = {{1, 2, 3}, {1, 2}, {2, 3}, {3, 1}}.
Finally suppose |Si| = 2,∀ i. If |S| = 2, we are done. So we need to

consider case B: S = {{1, 2}, {2, 3}, {3, 1}}, and without loss of generality, case
C: S = {{1, 2}}.
Suppose that {1, 2} ∈ S. This means that V ({1, 2})−w1−w2 ≥ V (N)−w1−

w2 − w3, so w3 ≥ V (N)− V ({1, 2}). If {2, 3} ∈ S, w1 ≥ V (N) − V ({2, 3}), so
w1+w3 ≥ 2V (N)−V ({1, 2})−V ({2, 3}) ≥ V ({3, 1}), with the latter inequality
due to the nonemptyness of C(V ). But in both cases A and B, {3, 1} ∈ S,
implying R = V ({3, 1})− w1 − w3 ≤ 0, a contradiction.
Now consider case C. If V ({1, 3}) − w1 − w3 6= V ({2, 3}) − w2 − w3, then

∃T ∗ s.t. ∀t < −T ∗, player 3 proposes to either player 1 or player 2 with
probability 1, in which case we are done. Thus V ({1, 3})−w1 = V ({2, 3})−w2 ≥
V (N)−w1 −w2. Then w1 ≥ V (N)− V ({2, 3}) and w2 ≥ V (N)− V ({1, 3}), so
we get a contradiction as above.
Having exhausted all cases, we conclude that (w1, w2, w3) ∈ C(V ). QED

Proof of Claim 3: Claim 1 implies that at any t in MPE, any player j
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proposes to the cheapest coalition of size K that includes her. Suppose wi(t) >
wi0(t). Then if any player j ∈ N\{i, i0} approaches i with positive probability,
she must approach i0 with probability 1. Moreover, if i0 approaches i with
positive probability, then i approaches i0 with probability 1. Since λi ≤ λi0 , the
probability of being included in a proposal at time t is greater for i0 than for i.
Also, wi(t) > wi0(t) implies that vi0(t)−wi0(t) ≥ vi(t)−wi(t), so λi0(vi0(t)−

wi0(t)) ≥ λi(vi(t)− wi(t)).
Combining the above two facts, we obtain that the left-hand derivative of

wi0 at t is weakly smaller (i.e. more negative or less positive) than the left-hand
derivative of wi whenever wi(t) > wi0(t). Since wi(0) = wi0(0), such t cannot
exist. QED

Proof of Theorem 7: First we establish the following lemma:
Lemma 4: There exists a time t0 ≤ 0 such that wi(t

0) = wi0(t
0) ∀ i, i0 ∈

{1, ...,K}.
Proof: Note that if there is no t0 as in the lemma, then at any time,

player 1 is approached by every player with probability 1 at all times. Letbwj(t) = min
C⊂N\{j}: |C|=K−1

P
i∈C

wi(t) + wj(t). Since player 1 always has the low-

est continuation value by Claim 1, bw1(t) = min
C⊂N : |C|=K

P
i∈C

wi(t) ≤ K
n . Thus

we have w01(t) = −λ1(1 − bw1(t)) ≤ −λ1 n−Kn , so that w1(t) ≥ −λ1 n−Kn t for all
t < 0, which is clearly impossible for t far enough from 0. Therefore, there must
be a time t0 as stated in the lemma. QED
Proof of Theorem: Let t1 = max

t<0
{t|wi(t) = wi0(t) ∀ i, i0 ∈ {1, ...,K}}. By

Lemma 4 and the continuity of continuation values, t1 is well-defined. Define
j1 such that wi(t

1) = wi0(t
1) ∀ i, i0 ∈ {1, ..., j1}, and wj1(t

1) < wj1+1(t
1) (if

j1 < N). Define w∗(t1) ≡ w1(t
1) = ... = wj1(t

1). Note that since j1 ≥ K,
every player at t1 only approaches players in {1, ..., j1}, approaches exactly
K − 1 of them, and offers w∗(t1) to each of them. Consider now the auxiliary
continuation payoff path wa = (wa

1 , ..., w
a
j1), which is the unique solution of

the differential equation ∂wai (t)
∂t = − 1

j1 [w
a(K − 1)

P
i>j1

λi +
P
i≤j1

λi] + λwa with

terminal condition wa
i (0) = 0 ∀ i ∈ {1, ..., j1}. It corresponds to a payoff path

resulting from all players at any time approaching players in {1, ..., j1} in a way
that keeps the payoff of all players in {1, ..., j1} the same. This path is not
necessarily feasible in the sense that in order to keep payoffs within {1, ..., j1}
the same, player 1 may need to be approached more frequently than if everyone
approached her with probability 1, in order to keep her on par with player j1.
At the same time, along this path, the continuation payoff of j1 might need to
grow more slowly than if all players approached her with 0 probability. That
is, along the auxiliary path we ignore the constraint that at any point of time,
the probability with which a player approaches another one has to be between
0 and 1. It is easy to see that wa

1(t) = ... = wa
j1(t) is continuous and strictly

monotonically decreasing in t, and it converges to a limit higher than w∗(t1)
as t → −∞. Moreover, as t decreases, the frequency at which player 1 (resp.
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player j1) needs to be approached in order to keep her at the same continuation
payoff as other players in {1, ..., j1} is decreasing (resp. increasing), since the
payoff of any proposer at t is 1 − (K − 1)wa

1(t), which is strictly increasing in
t (implying that players who propose more frequently have a greater advantage
later in the game).
Note that for all ε > 0, there must be some interval within (t1, t1 + ε) along

which wj1(t) − w1(t) increases in MPE. All the proposal probabilities are of
course feasible in MPE, so at t1, there must exist a set of feasible proposal
probabilities keeping wj1 and w1 (and thus also w2, ..., wj1−1) the same.
Consider now ta such that wa

1(t
a) = ... = wa

j1(t
a) = w∗(t1). Since w1(t1) =

... = wj1(t
1) = w∗(t1), along the auxiliary path at ta (and after) all players

have to be approached with feasible probabilities by every player. As noted
earlier, maintaining wa

1 = ... = wa
j1 becomes progressively easier as we move

back in time, so the auxiliary path employs feasible probabilities to the left of
ta. This means that there is an MPE of the original game for which there is
an interval on the left of t1 such that in this interval, all players propose only
to players in {1, ..., j1} in a way that keeps these players’ continuation payoffs
equal throughout the interval. Moreover, over this interval continuation values
w1(t) = ... = wj1(t) are strictly decreasing. By Theorem ... all MPE have the
same continuation value functions over the interval.
Suppose first that w1(t) = ... = wj1(t) is strictly below wj1+1(t) ∀ t < t1.

This means that players {j1 + 1, ..., N} are never approached in MPE. Since
w1(t) = ... = wj1(t) is monotonic in t and bounded within the interval [0, 1], it
converges as t→ −∞. Since at any t < t1 a proposer has to offer (K − 1)w1(t)
to other players, the fact that players in {j1 + 1, ..., n} are never approached
by any player and that w1(t) converges as t → −∞ together imply that wi(t)
converges for all i ∈ {j1 + 1, ..., n}, too. Note that if there is an arrival at any
time t, independently of the proposal the value of the approached coalition is 1,
and the proposal is accepted by probability 1. Hence, as t→ −∞,

P
i∈N

wi → 1.

The above results imply that the limit of continuation values as t → −∞ is
equal to xj

1

, as defined in the procedure above. The definition of j∗ together
with Claim 1 then imply j1 ≥ j∗. It cannot be that j1 > j∗ and xj

1 6= xj
∗
, since

along an auxiliary path where all players at all times approach only players in
{1, ..., j∗} in a way that keeps the latter players’ payoffs equal, the payoff of any
player i ∈ {1, ..., j∗} has to converge to a limit that is weakly greater than her
limit MPE payoff xj

1

i (since they are being proposed to at least as often as in

the MPE at all times), and by definition xj
1

i ≥ xj
∗

i .
Suppose next that at some time t < t1, w1(t) = ... = wj1(t) = wj1+1(t). Let

t2 = max
t<t1

{t|wj1(t) = wj1+1(t)} and let j2 such that j2 = max
i∈N

{i|wj1(t) = wi(t)}.
Analogous arguments as above establish that there is an interval on the left of
t2 on which w1 = ... = wj2 , and w1(t) = ... = wj2(t) is strictly decreasing in t.
Since n is finite, continuing the same argument establishes that there are

tk < ... < t1 ≤ 0 (for some k ≥ 1) and jk > ... > j1 ≥ K such that on (∞, tk),
w1 = ... = wjk , w1(t) = ... = wjk(t) is strictly decreasing in t, and that wi → x∗i
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as t→ −∞. QED
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