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Abstract. We examine whether the Coase conjecture [7, 14, 4, 10] is robust against
slight ability of commitment of the monopolist not to sell the durable goods to con-
sumers. We quantify the commitment ability in terms of the speed that the durable
goods perish, while keeping the time between the o�ers small. We demonstrate that the
slight commitment capability makes a substantial di�erence by constructing two kinds
of reservation price equilibria [10] that refute the Coase conjecture.

In the �rst equilibrium, the monopolist can credibly delay to make an acceptable
o�er. All consumers are served, but only after extremely long delay. Most of gains from
trading is discounted away, and the resulting outcome is extremely ine�cient. In the
second equilibrium, the monopolist's expected pro�t can be made close to the static
monopoly pro�t, if the goods perish very slowly. By focusing on the reservation price
equilibria, we rigorously eliminate any source of reputational e�ect. In fact, by using
the �rst kind of reservation price equilibrium as a credible threat against the seller, we
can construct many other reputational equilibria [2] to obtain the Folk theorem. Various
extensions and applications are discussed.

1. Introduction

A dynamic monopoly problem is crucial in understanding the foundation of the monop-
olistic power, in which a monopolist is selling goods to consumers over time by announcing
the sales price in every period until the potential gains from trading is exhausted. Under
a certain condition,1 the model has a (generically) unique subgame perfect equilibrium in
which the Coase conjecture [7, 4, 14, 10] holds. As the time between the o�ers converges
to zero, the initial o�er of the monopolist must converge to the competitive market price.
This result implies that the commitment ability of the monopolist not to sell the goods
for a given amount of time is the foundation of the monopolistic power. The uniqueness
of the equilibrium outcome o�ers a crisp benchmark for diagnosing and remedying the
non-competitive behavior in the market for durable goods.
This paper investigate the implication of a di�erent kind of commitment ability of the

monopolist. In contrast to the existing models of the durable goods monopoly, we assume
that the goods perish over time. Although we assume that the good does not perish in
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order to simplify the analysis, virtually all durable goods are perishable, with possible
exceptions of diamond or commercial land.
By commitment, we mean an action that entails an irreversible consequence. Perisha-

bility captures the irreversibility in terms of quantity while the time between the o�ers
measure the irreversibility in terms of timing of sales which is generally considered a mea-
sure for the commitment ability of the monopolist. In order to highlight the implication
of the di�erent kind of commitment, we focus on a model with perishable durable goods,
where the time between the o�ers is small, thus the commitment capability in the \classic
sense" is small. Throughout this paper, we quantify the monopolist's commitment ability
in terms of the speed that the durable goods perish away at the instant rate of e�b for
some small b > 0.2

Despite an extensive literature on the dynamic monopoly problem as well as sequential
bargaining models (e.g., [13, 9, 2, 5, 6, 8]), we have little understanding about how the
market outcome changes with respect to the ability of commitment of the monopolist,
except for the two limit cases: complete decay and no decay. In order to examine how
robust the Coase conjecture is, we should examine whether the Coase conjecture continues
to hold, if the monopolist can be committed not to sell a small amount of goods to
consumers.
We di�erentiate \perish" from \depreciate," while we use \perish," \decay" and \burn

o�" interchangeably. Perishable goods decay before they are sold, which a�ects the future
supply of the goods irreversibly. On the other hand, goods depreciate only after they are
delivered to consumers, which generate the demand for replacement. The strategic impact
of depreciation was analyzed by [3]. It is shown that with a positive rate of depreciation,
the monopolist is not willing to provide the competitive level of goods. Yet, the gap
between the competitive outcome and the monopolistic outcome vanishes as the time
between o�ers and the depreciation factor converge to 0. In order to highlight the impact
of slight decay, this paper assumes that the good is not depreciated after it is delivered to
consumers.
In contrast to [3], we �nd a signi�cant discontinuity in outcomes with respect to the

rate of decay around b = 0 (no decay). To di�erentiate two cases, we call the durable
good problem with b = 0 (no decay) classic problem, while the case with b > 0 (decay)
is referred to as perishable problem. We examine the same rule of game as the classic
durable goods monopoly problem with the linear (inverse) market demand curve p = 1�q
where the monopolist o�er pt in period t, which was accepted or rejected by consumers.
After the o�er is rejected, the monopolist has to wait for � > 0 before o�ering pt+1. The
game continues until the potential gain from trading is exhausted: either all consumers
are served, or all available stock is sold. All agents are risk neutral with the same discount
factor � = e�r� for some r > 0.
We focus on the case where the demand curve does not hit p = 0 (\gap case") in order

to sharpen the comparison: 9qf < 1 such that the market demand curve is p = 1 � q
for q 2 [0; qf ]. We interpret qf as the size of the whole market. In this case, the classic
problem has a unique subgame perfect equilibrium in pure strategies, where the consumer's

2If b =1, it is the case of complete commitment, while b = 0 corresponds to the classic durable good
monopoly problem.
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acceptance rule can be represented as a threshold rule. We call such a subgame perfect
equilibrium a reservation price equilibrium [10], for which the Coase conjecture holds: in
any reservation price equilibrium, the initial o�er converges to the lowest reservation value
of the consumers, and all consumers are served almost immediately as �! 0.
Perishable property of the goods has two fundamental strategic implications, however

slowly the goods perish. First, the total amount of goods sold in an equilibrium is endoge-
nously determined, while in the classic problem, it must be exactly qf . In fact, if qf < 1,
the terminal o�er must be 1 � qf in order to clear the market. Then, by invoking the
backward induction process from the terminal period, we construct an subgame perfect
equilibrium outcome. Since the terminal price is �xed, so is the total number of period,
which leads to the uniqueness of the subgame perfect equilibrium. However, if the good is
perishable, the total amount of goods delivered to the consumer depends upon the history
of sales. As a result, the �nal price is endogenously determined. This exibility allows us
to construct many di�erent subgame perfect equilibria, even if the gain from trading is
common knowledge (\gap case").
Second, if the good does not perish, it is never optimal to spend a round without

making any sales. Without making a sale, the monopolist is facing exactly the same
residual demand curve, and the supply curve as in the previous round. Thus, no sales
means wasting time, which cannot happen in any equilibrium path if the monopolist
is impatient. However, if the good perishes, the continuation game following a period
without any sale is not the same as in the previous round, because the supply of the good
has decreased. In fact, if the good perishes su�ciently quickly and if the demand curve
is inelastic, making no sale could be a part of an equilibrium strategy. This intuition
continues to hold even if the good perishes very slowly.
To formalize these observations, we construct two reservation price equilibria, which

roughly form the upper and the lower bounds of the set of all subgame perfect equilibrium
payo�s of the monopolist. In the �rst equilibrium, the monopolist's expected pro�t is close
to 0 if qf < 1 is close to 1 and b ! 0. Interestingly, almost all consumers are served but
the market outcome is extremely ine�cient. The monopolist credibly delays to make an
acceptable o�er until the available stock reaches the target level. Because b > 0 is small,
it takes exceedingly long periods for the available stock to reach the target level, and
the consumer surplus is discounted away. While the monopolist generates pro�t slightly
higher than what he could have made in the equilibrium satisfying the Coase conjecture,
his pro�t is also very small.
In the second reservation price equilibrium, the monopolist's expected pro�t is close

to the static monopoly pro�t. The slow decay opens up a strategic opportunity for the
monopolist to credibly delay to make an acceptable o�er for a signi�cant time. If the
consumer knows that an acceptable o�er will arrive in the distant future, he is willing
to accept a high price. By exploiting the impatience of the consumers, the monopolist
can achieve almost the static monopolist's pro�t. Interestingly, this equilibrium entails a
randomization strategy o� the equilibrium path, in a sharp contrast to the classic problem
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which has a unique pure strategy subgame perfect equilibrium if the demand curve is linear
and qf < 1.3

The set of subgame perfect equilibria is discontinuous with respect to the perishability of
the durable goods in a number of important ways. First, the subgame perfect equilibrium
that satis�es the Coase conjecture is no longer an equilibrium in some nearby game to
the classic problem unless the good is very plentiful in the initial round. Second, the
equilibrium outcome in the nearby game is much richer than the classic problem. Thus,
the equilibrium analysis does provide us a precise benchmark, against which the actual
market outcome can be compared. Substantial market power does not necessarily imply
substantial commitment power. Thus, the classical remedy to unravel the commitment
capability of the monopolist not be as e�ective as the classic problem suggests.
The rest of the paper is organized as follows. Section 2 formally describes the model

and the key results from the classic durable good monopoly problem. Section 3 examines
a simple example where the market demand curve is a step function to illustrate the key
features of the equilibrium in the perishable problem, although our main result is built
around a linear demand curve. Section 4 analyzes a market with a linear demand curve.
In Section 4.1, we �rst explore an arti�cial game in order to highlight the mechanism that
prompts the monopolist to delay to make acceptable o�ers, because the construction of
the equilibrium strategy of the perishable problem is considerably involved. We calculate
an equilibrium of the arti�cial game to reveal the critical element of the subgame perfect
equilibrium of the perishable problem. In Section 4.2, we construct a reservation price
equilibrium, which approximates the equilibrium of the arti�cial game in Section 4.1.
We observe that the monopolist may spend many periods without making acceptable
o�ers, while burning o� the available stock to reach the target level. The equilibrium
constructed in Section 4 seems to indicate that the monopolist's pro�t should be small,
if the monopolist has little ability to commit himself not to sell (small � > 0 and b >
0). Section 5 shows the contrary by constructing an equilibrium where the monopolist
can generate a large pro�t. Section 5.1 examines another arti�cial game, in which the
monopolist can choose the time interval of making unacceptable o�ers to highlight the
structure of the second equilibrium. We show that as b! 0, the monopolist's equilibrium
in this game converges to the static monopoly pro�t. In Section 5.2, we construct a
reservation price equilibrium, which approximate the equilibrium constructed in Section
5.1. Section 6 concludes the paper with discussions on extensions and policy implications.

2. Preliminaries

Except for Section 3, we focus on a market where the demand curve is linear:

(2.1) p = 1� q q � qf < 1

where q 2 [0; qf ] is the size of the consumers who were served, and p is the delivery price.
We regard each point in [0; qf ] as an individual consumer. By consumer q, we mean a
consumer whose reservation value is 1� q. We call qf the size of the whole market.

3The �rst equilibrium can be served as a credible threat against a deviation by the monopolist. Following
the idea of constructing reputational equilibria in [2], we can sustain any level of monopolist's pro�t as a
subgame perfect equilibrium. Note that the second reservation price equilibrium shows that even without
reputational equilibria, the monopolist can achieve almost the static monopoly pro�t.
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We write a residual demand curve as D(q0; qf ) after q0 2 [0; qf ] consumers are served.
Following the convention of the literature, we shall treat two residual demands identical
if they di�er only over the null set of consumers. Let yt be the amount of stock available
at the beginning of period t. Except for Section 3, we assume that the initial stock is
su�cient to meet all demand in the market: y = y1 > 1:
Let qt be the total mass of consumers who has been served by the end of period t. Thus,

qt � qt�1 is the amount of sales in period t. Then,

yt+1 = �(yt � (qt � qt�1))

for � = e��b, � > 0 and b > 0. We call � > 0 the time interval between the o�ers, and
b > 0 the instantaneous rate of decay.
Let ht be the history at period t, that is a sequence of previous o�ers (p1; : : : ; pt�1).

A strategy of the monopolist is a sequence � = (�1; : : : ; �t; : : :) where �t(ht) = pt 2 R+
8t � 1. Let � be the set of strategies of the monopolist. Similarly, a strategy of a consumer
q is a mapping from his reservation value 1� q, history of o�ers and the present o�er p to
a decision to accept or reject. If he purchases the good at p, then his surplus is (1� q)�p.
All agents in the model have the same discount factor � = e�r� for r > 0.
Let fq0; q1; q2; : : : ; qt; : : :g be a sequence of weakly increasing numbers, which represent

the sequence of the total mass of consumers who have been served by the end of period t.
Naturally, q0 = 0. Let Q be the set of all such sequences. The monopolist's pro�t is

1X
t=1

�t�1(qt � qt�1)pt

where pt = �t(ht) where ht = (p1; : : : ; pt�1).
We say that the market is cleared at t if the monopolist meets all the demand qt = qf

or sells all remaining stock qt � qt�1 = yt > 0 for the �rst time at t <1:

qt = min(qf ; yt + qt�1):

We know that in the classic problem, the market is cleared in a �nite number of periods
if qf < 1 [9, 10].
Given the monopolist's strategy �, consumer q's action is optimal if he accepts pt in

period t if

(1� q)� �t(p1; : : : ; pt�1) > sup
k�1

�k((1� q)� �t+k(p1; : : : ; pt�1; pt; : : : ; pt+k�1))

and rejects, if the inequality is reversed, where pt is realized according to �, 8t � 1.
By exploiting the monotonicity with respect to the reservation value, the classic problem
allows us to write the optimality condition of the consumers more compactly by focusing
on the critical type 1 � qt, who is indi�erent between accepting the present o�er and the
next o�er:

(1� qt)� pt = � ((1� qt)� pt+1)

where pt = �t(ht) and ht = (p1; : : : ; pt�1). However, in the perishable problem, we have to
admit the possibility that qt = qt�1 for some t � 1 if the monopolist makes unacceptable
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o�ers.4 We need to write the consumer's optimality condition in a more general way:

(2.2) (1� qt)� pt = sup
k�1

�k ((1� qt)� pt+k) :

We say pt is unacceptable if qt�qt�1 = 0. While any arbitrarily large o�er is an unaccept-
able o�er, it is often convenient to set an unacceptable o�er as an o�er that makes the
highest reservation value consumer in D(q0; qf ) indi�erent between accepting and rejecting
the present o�er:

(2.3) (1� q0)� pt = sup
k�1

�k ((1� q0)� pt+k) :

We can de�ne a Nash equilibrium in terms of the monopolist's strategy � that solves

(2.4) max
�2�

1X
t=1

�t�1(qt � qt�1)pt

where pt = �t(ht) where � = (�1; �2; : : :) and ht = (p1; : : : ; pt�1) and q = (q1; q2; : : :) satis-
�es (2.2). We say that � is a subgame perfect equilibrium if � induces a Nash equilibrium
following every history.
We shall focus on a class of subgame perfect equilibria where a consumer's strategy is

characterized by a threshold rule, which is a natural state variable of the game, namely
the residual demand and the available stock.

De�nition 2.1. A subgame perfect equilibrium is a reservation price equilibrium, if there
exists P : [0; qf ]

2 � [0; y]! R such that

pt = P(qt; qf ; yt)

with yt = �(yt�1 � (qt � qt�1)) where pt is the equilibrium price o�ered in period t, qt is
the total mass of consumers served by the end of period t and yt is the available stock at
the beginning of period t.

The Coase conjecture holds for the classic durable good problem.

Theorem 2.2. [14, 4, 10] Suppose that b = 0. If qf < 1, then a (generically) unique
subgame price equilibrium exists, which is a reservation price equilibrium in pure strategies.
In any reservation price equilibrium, the initial o�er of the monopolist converges to 1� qf
and thus, his pro�t converges to qf (1� qf ) as �! 0.

Before describing and analyzing the perishable problem, let us describe the classic prob-
lem to review useful results. The optimization problem of the risk neutral monopolist for
the classic problem is to choose a sequence q 2 Q to maximize the discounted expected
pro�t subject to a couple of constraints:

Vc(q0; qf ; y) = max
q2Q

1X
t=1

pt(qt � qt�1)�
t�1(2.5)

subject to (1� qt)� pt = �((1� qt)� pt+1)(2.6)

lim
t!1

(1� qt)� pt = 0:(2.7)

4Actually, he does in an equilibrium.
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(2.6) is the constraint imposed by the rational expectations of the consumers, which
renders pt as a function of qt and qt+1. (2.7) implies that in order to clear the market, the
\�nal" o�er of the monopolist must be the lowest reservation value of the consumer.5

Let Tf (q0; qf ; y) be the total number of periods needed to make sales before serving
every consumer in the market, or exhausting all available stock. If it takes in�nitely
many periods to serve all consumers, we let Tf (q0; qf ; y) = 1. In the classic problem,
Tf (q0; qf ; y) is precisely the number of o�ers the monopolist makes in the game. Since the
monopolist must serve a positive portion of consumers in every period,

qt < qt+1 8t � 1

must hold, unless the market is closed in period t. We can understand Tf (q0; qf ; y) as the
total number of periods needed to serve all consumers in the classic problem. For the later
analysis, it would be more convenient to interpret Tf (q0; qf ; y) as the �rst period to clear
the market either by serving all consumers (qt = qf ) or exhausting all remaining stock
(qt � qt�1 = yt), after making the �rst acceptable o�er at t0 � 1:

Tf (q0; qf ; y) = infft� t0 + 1 : qt = min(qf ; yt + qt�1)g:

In the classic problem, Tf (q0; qf ; y) is exactly the total number of periods when the mo-
nopolist keeps the market open, because t0 = 1. Let us summarize the key properties
of the subgame perfect equilibrium in the classic problem, which will be a key building
block for constructing a reservation price equilibrium in the perishable problem. Because
these properties are already proved for the analysis of the classic problem, we state them
without proofs.

Lemma 2.3. Suppose that b = 0.

(1) Fix y. If qf 6= q0f , then there is no q 2 [0; qf ] such that P(q; qf ; y) = P(q; q0f ; y).

(2) If qf < 1, Tf (q0; qf ; y) <1.
(3) q(q0; qf ; y) is a continuous function of (q0; qf ; y) if qf < 1.
(4) Tf (q0; qf ; y) is a decreasing function of q0, but increasing function of qf .

The properties of Lemma 2.3 hold for general continuously downward sloping demand
curve, except for the last part of the last statement which says Tf (q0; qf ; y) is an increasing
function of qf . The demand is inelastic in the linear demand where qf is close to 1, which
encourages the monopolist to reduce the quantity and thus, to spend more time to sort
out consumers with di�erent reservation values. However, if the demand curve is very
elastic around qf ' 1, then the monopolist may �nd it pro�table to accelerate the sales.
This property is used mainly to establish the existence of the reservation price equilibrium
and to facilitate the construction of an equilibrium.

3. Illustration

Instead of a market with a linear demand, we �rst examine a market populated with a
continuum of in�nitesimal consumers, whose total mass is x+ 1

2 . This example also shows
the technical issues arising from analyzing a general demand curve.

5If qf = 1 so that the lowest reservation value is 0, then the market opens inde�nitely so that there is
no \�nal" o�er. Yet, the price must converge to 0 as t!1.
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Let us assume that x units of the consumers have valuation 3 and the remaining con-
sumers have valuation 1, where x 2 (0; 0:5]. The monopolist has y amount of perishable
but durable goods. Assume that y � 0:5 so that in the initial period, the monopolist can
serve every high valuation consumer. While the demand curve is not continuous, this ex-
ample is su�ciently simple that we can precisely calculate a subgame perfect equilibrium
to understand the structure of the equilibrium.
Let us focus on the case where

0 � x � y � x+
1

2

and x � 1=2 is su�ciently large that the monopolist's optimal initial o�er in the classic
problem is 3 � 2�. If x > y, then the monopolist can charge 3 credibly to serve every
high valuation buyer and close the market. If y � x + 1

2 , the available stock is less than
the total number of remaining consumers, including the low valuation buyers. We shall
discuss the remaining cases after we completely analyze the most interesting cases.

3.1. Construction of an Equilibrium. In the classic problem (b = 0), the optimal
pricing rule is to open the market for two periods, o�ering p1 = 3� 2� and p2 = 1 unless
x is too small. The initial o�er will be accepted by the high valuation consumers, while
the last o�er serves all remaining low valuation consumers.
Suppose that the goods decay (b > 0). What would be the initial o�er from the

monopolist? The answer depends upon how quickly yt � x, for a given level of patience
of the players. For example, if y = y1 � x, then the monopolist can credibly charge 3
from the initial period, which will be accepted by all high valuation consumers. What if
y decays slowly so that y2 = �y � x < y? The answer to the same question is no longer
obvious. In fact, if the monopolist is su�ciently patient (small r > 0), he will �nd it
optimal not to make any sales in the initial round so that the available goods can burn o�
as quickly as possible in order to achieve y2 � x. In this way, he can charge 3 from period
2, which will be accepted by the high valuation consumer.
In a sharp contrast to the classic problem, making an unacceptable o�er can be a part of

an optimal pricing sequence. To reduce the available amount of goods, the monopolist can
credibly refuse to serve any consumers. As a result, the market outcome su�ers from two
di�erent kinds of ine�ciency. First, as in the classic problem, it will take more than one
period to serve the consumers and this delay will be greater than in the classic problem if
the monopolist chooses to burn o� some of the goods. Second, if the monopolist chooses
to burn o� the available stocks, then some consumers may not be served. One of our
objectives is to understand how the perishability factor a�ects the overall ine�ciency of
the market outcome, especially when �! 0.
A natural state variable is (x; y) which characterize the residual demand and the quan-

tity of available goods. If x � y, then the monopolist can charge 3 and serve all remaining
high valuation consumers, credibly excluding the low valuation consumers. The key deci-
sion is how long the monopolist has to wait before he can credibly charge 3.
Essentially, the monopolist has three options at (x; y).
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� Accelerating. The monopolist can accelerate the sales in one of the two ways.
First is to charge to serve everyone in the market. His pro�t will be

(3.8) y:

An alternative method is to charge 3� 2� which is accepted by all high valuation
buyers, and in the following round, charge 1 which is accepted by the remaining
low valuation buyers. The average discounted pro�t is

(3.9) (3� 2�)x+ ��(y � x):

Whether (3.8) or (3.9) is optimal depends upon the size of x.
� Delaying. Continue to charge 3 until the high valuation consumer concludes that
the monopolist will not lower the price, which will make the high valuation buyer
to accept the o�er. Let k be the �rst period that

�k�1y � x

when the monopolist can charge credibly 3, which is accepted by the high valuation
buyer immediately. Thus, if it takes k rounds, the expected pro�t is

(3.10) 3�k�1min(�k�1y; x):

In order to delineate the optimal action of the monopolist under (x; y), let us character-
ize the \indi�erence state" between the Coase conjecture type strategy and the last one
involving delay. That is state (x; y) solving

(3.11) max (y; (3� 2�)x+ ��(y � x)) = 3�k�1min(�k�1y; x):

assuming for a moment that k can take any positive real number.

Lemma 3.1. Suppose that k can be any non-negative real number.

(1) 8(x; y), 9k � 0 such that (3.11) holds.
(2) If (x; y) satis�es (3.11), then so does (�x; �y) 8� > 0.
(3) De�ne

K = fk : 9(x; y) such that (3.11) holds.g :

Then, K is a compact and connected set and therefore,

supK <1:

(4) For a �xed x, and y0 > y. Let k and k0 be the solution associated with (x; y) and
(x; y0) in (3.11). Then, k0 > k.

Proof. De�ne

g(k) = max (y; (3� 2�)x+ ��(y � x))� 3�k�1max(�k�1y; x):

which is a continuous function of k. Note g(0) < 0 and limk!1 g(k) > 0. Moreover,
g(k) is a strictly increasing function of k. Thus, there exists a unique k satisfying (3.11).
Note that g(k) is a linear function of (x; y) which implies the second statement. We know
that the mapping (x; y) 7! k satisfying (3.11) is continuous. Since (x; y) is contained
in a compact set, K is compact, which implies the third statement. The last statement
statement follows from the fact that the more the existing stock is, the longer it takes to
reach the area where y � x depicted in Figure 1. ut
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For a �xed x, there is one-to-one correspondence between (x; y) and the solution k from
(3.11). For each k, de�ne �(k) = y=x where (x; y) induces k as the solution of (3.11).
From Lemma 3.1,

U(k) = f(x; y) : k is the solution of (3.11)g

is a half line through the origin with slope �(k) which is a strictly decreasing function of
k. The slope of �(k) can range from 1 to +1.
U(k) represents the collection of states that make the monopolist indi�erent between

two options of accelerating and delaying if the delay takes k periods. However, there is no
guarantee that k is self-ful�lled. Again, let us assume for another moment that k can take
any positive real number. Given (x; y), we can �nd a unique k > 0 such that

�k�1y = x

which is the �rst time when the monopolist can credibly charge 3, which is accepted by
the remaining high valuation buyer with probability 1. De�ne

V(k) =

�
(x; y) : y =

1

�k�1
x

�

as the collection of states, which takes k periods to reach the area

f(x; y) : y � xg

where the monopolist's o�er 3 is accepted with probability 1. Note that V(k) is a half-line
passing through the origin. Its slope is ranging from 1 to +1, which is a strictly increasing
function of k.
Therefore, there exists k� > 0 such that

(3.12) V(k�) = U(k�):

This k� has a special meaning in the sense that if (x; y) 2 U(k�), the monopolist expects
that in k� periods, his o�er 3 will be accepted with probability 1 and indeed, it takes k�

period before such event occurs.

Remark 3.2. If k can take only a positive integer value, the same analysis proves the
existence of a positive integer k� such that

(3.13)
1

�k�
� �(k�) �

1

�k��1
:

According to the de�nition of �(k�) and U�(k�), if y > �(k�)x, then the monopolist
charge 1 or 3 � 2� to 3, depending upon the size of x. Unless x > 0 is too small, the
monopolist immediately makes an o�er 3 � 2� which is accepted by all high valuation
seller whose mass is x, and o�er 1 to clear the market. As depicted in Figure 1, the state
moves along 45 degree line passing through (x; y), because each consumer demand exactly
one unit. On the other hand, if x < y < �(k�)x, then the monopolist refuses to make
an acceptable o�er. For analytic convenience, let us assume that the monopolist charges
3 + � for a small � > 0, which is rejected by all high valuation consumer. The available
stock decays at the rate of � in each period. After k periods of rejected o�ers, suppose
that �ky < x < �k�1y holds. If the high valuation consumer rejects 3 + �, then �ky < x
implies that from the next period, there is excess demand among high valuation consumer
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3

1

O x y x+0.5

t=1

x

y

O

(x,y)

(x',y')

y=αx

y=x

t=2

Figure 1: The left panel illustrates how the available stock decays in case that the monopolist makes no
sales in the �rst two rounds when � > 0 is relatively large. The right panel depicts the area of (x; y)
associated with the two di�erent strategies when � > 0 is small. The bold straight line is y = �x. The
monopolist makes an acceptable o�er immediately if y > �x. Note that if the monopoly makes sales, x and
y decreases by the same amount, and (x; y) is moving along the 45 degree line passing through (x; y). If
all high valuation consumer is served, then x becomes 0. If y0 < �x0, then the state moved down vertically
because no sales are made until the state hits y = x.

and the monopolist can charge 3. Thus, all high valuation consumer is willing to accept
any o�er up to 3. Knowing this, the monopolist charges 3, following k unacceptable o�ers.
We can sustain this outcome as the subgame perfect equilibrium.

Proposition 3.3. The outcome path constructed above can be sustained by a subgame
perfect equilibrium, which involves randomization o� the equilibrium path.

Proof. See Appendix A. ut

The equilibrium strategy may entail a positive amount of time when the monopolist is
willing to make no acceptable o�ers. Wasting time without making sales can never be a
part of an equilibrium strategy in a classic durable good problem if the gain from trading
is common knowledge, as in our example. However, because the goods are perishable,
however slightly, making no sales does not mean wasting time. Rather, the monopolist
can deliberately wasting some available stocks in order to manipulate the beliefs of the
consumers about the monopolist's future prices.
Even if almost all consumers are served in the equilibrium, one cannot conclude that

the market outcome is almost e�cient. If it takes substantial time to achieve an optimal
amount of stock, the realization of the gains from trading can take excessively long time.
As a result, the discounted social surplus could be very small, even if almost all consumers
are eventually served.
While this example is simple enough to allow us to calculate the subgame perfect equi-

librium, it has a couple of rather peculiar features. Because the type space of the con-
sumers is discrete, the gain from the reducing the available stock increase discontinuously.
Combined with the fact that the initial stock is smaller than the whole market demand
(y � x + 0:5), the monopolist has good reason to delay the o�er, because a large return
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from the delay is realized fairly quickly. A natural question is whether the key properties
of the equilibrium are carried over to the cases where the demand curve is continuous and
the initial stock is larger than the whole market demand. To answer this question, we
examine the market with a linear demand for the rest of the paper.

4. Market with a Linear Demand

In order to highlight the key features of the equilibrium which will be constructed in
this section, let us �rst examine a simple, but arti�cial, game. Then, we construct a
reservation price equilibrium, which is approximated by the equilibrium of the arti�cial
game.

4.1. Example 2. An Arti�cial Game. Let us consider an arti�cial game in which the
monopolist in the market with a linear demand curve (2.1) has two options: make one
�nal sale, or delay the sale. The monopolist can choose when he opens the market, say
�f � 0, and then, he must make an o�er to serve everyone in the market or sell all the
goods available at that point, if there is an excess demand.
If the monopolist charges p�f = 1� q�f after delaying �f time, q�f portion of consumers

will be served. Since p�f must clear the market,

1� p�f = min(q�f ; e
��f by)

must hold. In any equilibrium, q�f is selected in such a way that the monopolist cannot
improve his pro�t by delaying the sale. De�ne

h(q : �) = e��r
h
e��bq(1� e��bq)

i
� q(1� q)

as the gain from delaying � amount of real time and charging 1� e��bq to serve everyone
whose valuation is higher than 1� q in the market, if the present available stock is q � 1.
It is easy to see that h(q : 0) = 0 and

@h(q : 0)

@�
= �(r + b)q + (r + 2b)q2:

If
@h(q : 0)

@�
� 0;

then 8� > 0, @h(q:�)
@�

< 0. If

@h(q : 0)

@�
� 0;

then 8q0 � q, @h(q0:0)
@�

� 0. If @h(q : 0)=@� > 0, then the monopolist can be better

o� by delaying the sale on period. Although the total stock will be reduced to e��bq,
but he can credibly charge higher price 1 � e��bq to generate higher pro�t. Similarly, if
@h(q : 0)=@� < 0, then he should have accelerated the sale. Thus, the optimal quantity q
solves

@h(q : 0)

@�
= 0;
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which is

(4.14) q =
r + b

r + 2b
;

and the discounted pro�t is

e�r�(y)
b(r + b)

(r + 2b)2

where �(y) is de�ned implicitly by

e�b�(y)y =
r + b

r + 2b
:

The optimal quantity, (r + b)=(r + 2b), is very revealing. For a given time preference
r > 0, if the good is not perishable (b = 0), then all consumers must be served, as in the
classic problem. On the other hand, if the good is perishing quickly (i.e., large b > 0), the
quantity converges to 1=2 which is the monopolistic pro�t maximizing quantity.
The ensuing analysis shows that the outcome of this arti�cial game approximate the

outcome of the reservation price equilibrium of the dynamic monopoly problem where he
can charge a series of prices over time, combined with delaying the o�ers. The missing
step is to make it sure that the delay strategy generates a higher pro�t than the strategy
satisfying the Coase conjecture, from which the monopolist can generate pro�t qf (1� qf )
almost instantaneously if � > 0 is small. Note that

e�r�(y)
b(r + b)

(r + 2b)2
> qf (1� qf )

holds as long as qf is su�ciently close to 1 for given b; r; y.6 Then, a substantial delay of
an acceptable o�er can arise in a reservation price equilibrium.
Note that for a �xed r > 0,

lim
b!0

r + b

r + 2b
= 1

which implies that every consumer will be served in the limit. Yet, the outcome is ex-
tremely ine�cient. A simple calculation shows that

�(y) =
1

b

�
log y � log

r + b

r + 2b

�
:

If y > 1, as b! 0, the right hand side increases inde�nitely, implying that the monopolist
is willing to delay the sale as long as possible in order to generate a positive pro�t, even
if it is realized after a long delay. As a result, the market outcome becomes extremely
ine�cient, because the potential gains from trading is discounted away during the long
delay. Even if y = 1, l'Hôpital's rule implies that

lim
b!0

�(y) =
1

r

which implies that the delay does not vanish and can be signi�cant if the monopolist is
very patient.

6One might wonder whether we have to check the same inequality for each � > 0. From the analysis of
h(q : �), we know that if this equality holds the beginning of the game, then it continues to hold for � > 0
until the available stock reaches the optimal level.
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4.2. Construction of a Reservation Price Equilibrium. We search for a reservation
price equilibrium where the equilibrium path consists of two phases: the �rst phase where
the monopolist is making unacceptable o�ers, and the second phase where the monopolist
is making a series of acceptable o�ers. In the second phase, we can invoke the same insight
as in the classic problem to construct the equilibrium path. In particular, we can write
(2.2) in a simpler form (2.6). And, then by calculating the optimal time for delaying to
make the �rst acceptable o�er, we construct the equilibrium outcome, where the total
gains from trading vanishes as �! 0.
We construct an equilibrium for the rest of the section, in which the total surplus from

trading is arbitrarily small, despite the fact that almost every consumer is served by the
monopolist. As in Section 4.1, the monopolist delays to open the market (or equivalently,
making unacceptable o�ers) for �1 2 f�; 2�; : : :g before making an acceptable o�er, in
order to avoid the integer problem. After the initial acceptable o�er, the monopolist keeps
making acceptable o�ers.
Given residual demand D(0; qf ) and the initial stock y with qf < 1, the optimization

problem can be written as

max
�1;q2Q

e�r�1
1X
t=1

pt(qt � qt�1)�
t�1(4.15)

subject to (1� qt)� pt = �((1� qt)� pt+1)(4.16)

pTf = 1� qTf(4.17)

�Tf

0
@e�r�1y �

TfX
t=1

��t(qt � qt�1)

1
A � 0(4.18)

�Tf

0
@e�r�1y �

TfX
t=1

��t(qt � qt�1)

1
A (qTf � qf ) = 0(4.19)

where Tf is the number of periods when a positive portion of consumers is served. �1
is the time during which the monopolist makes no sale, simply burning o� the available
stock at the rate of e�b. The objective function and the �rst two constraints are identical
to the classic problem and so is the de�nition of Tf .
The last two constraints warrant explanation, as they capture the key elements of the

perishable problem. The �rst step is to observe that the trading must be completed in
�nite rounds, which is reminiscent to a well known result from the classic problem [9].

Lemma 4.1. If qf < 1, then in any optimal solution, �1 +�Tf <1.

Proof. Given the structure of the candidate equilibrium, the proof to show Tf < 1 is
identical with the one in the classic problem [9, 10]. It remains to show that �1 <1.
It su�ces to show that 9�� > 0 such that if �1 > ��, then (�1;q) cannot be an optimal

solution for any q 2 Q.
Given demand curve D(0; qf ), let qm(0; qf ) be the static monopoly pro�t maximizing

quantity. The monopolist can choose �1 so that e�b�
�
yo = qm(0; qf ), and charge 1 �

qm(0; qf ), which will be accepted by all consumers whose valuation is at least 1�qm(0; qf ).
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Thus, the equilibrium payo� of the monopolist is uniformly bounded from below by

e�b�
�

(1� qm(0; qf ))q
m(0; qf ):

If the monopolist spends more than �� before making an acceptable o�er, he cannot achieve
this level of pro�t. Thus, if �1 is selected in an equilibrium, then �1 � ��. ut

If q1 � q0 consumers accepts the �rst acceptable o�er from the monopolist, then at the
end of the period, e�b�1y � (q1 � q0) is available, but by the beginning of period 2, only
�(e�b�1y � (q1 � q0)) is available. Thus, by the time when all available goods are sold,

�
�
� � �
�
�(e�r�1y � (q1 � q0))� (q2 � q1)

��
� (qTf � qTf�1) � 0

must hold, because the amount of sales in period t cannot exceed the amount of stocks
available in that period. The constraint can be written as

(4.20) �Tf

0
@e�r�1y �

TfX
t=1

��t(qt � qt�1)

1
A � 0:

However, if qTf = qf , then the market is cleared in the sense that the monopolist serves
all consumers with reservation value higher than the production cost. As a result, it is
possible that a positive amount of goods is left over. But, if qTf < qf , then some consumers
are not served and the �nal o�er must be such that all remaining goods are sold. Hence,
the complementary slackness condition (B.36) must hold.
We show by construction that the above optimization problem has a solution. Let

Wc(�) and Ws(�) be the consumer and the producer surplus if the time between the
o�ers is � > 0.

Proposition 4.2. Fix initial stock y > 1 and size of the demand qf < 1. Given demand
curve D(0; qf ) and initial stock y, there exists an optimal solution (�1;q), which can be
sustained as a reservation price equilibrium.

Proof. See Appendix B. ut

Fix y, and let qTf (�) be the total amount that is delivered and T1(�) be the �rst round
when the monopolist is making an acceptable o�er when the time between the o�ers is
� > 0. Clearly, 8� > 0, qTf (�) 2 [0; y] and �T1(�) 2 [0; ��]. De�ne

q0 = lim
�!0

qTf (�)

and
�1(0) = lim

�!0
�T1(�)

by taking a convergent subsequence, if necessary.
Note that the sequence of acceptable o�ers is precisely the same as the one in the classic

counter part where the demand curve is D(0; qTf (�)). Hence, the Coase conjecture implies
that the pro�t from the perishable problem converges to

e��1(0)bq0(1� q0):

Hence, the limit properties of the reservation price equilibrium can be examined through
the same method as illustrated in Example 4.1.
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Let Wc(�) and Ws(�) be the (ex ante) expected consumer surplus and the expected
producer surplus from the game where the time between the o�ers is � > 0. The following
proposition formalizes this observation.

Proposition 4.3. 8� > 0, 9b > 0 such that 8b 2 (0; b], 9qf such that 8qf 2 (qf ; 1),

9� > 0 such that 8� 2 (0;�), Wc(�) < � and Ws(�) < �.

The constructed equilibrium con�rms our intuition that if the monopolist has little
commitment power (small b > 0 and small � > 0), then he can exercise little market power
and entertain small pro�t. This observation is generally consistent with the key implication
from the classic problem, and has an important policy implication. If the monopolist
exercise substantial market power, then his commitment power must be substantial. Thus,
by unraveling the source of the commitment power, the government can reduce the market
power of the monopolist. In the perishable problem, this conclusion does not hold in
general, because we can construct another reservation price equilibrium that generate
substantial pro�t, despite small b > 0 and small � > 0.

5. Small Commitment but Large Profit

We claim that substantial market power does not imply substantial commitment power.
To substantiate the claim, we need to construct a subgame perfect equilibrium in which the
monopolist can generate a large pro�t when b > 0 and � > 0 are small. The equilibrium
constructed in Section 4.2 can serve as a credible threat to force the monopolist to follow a
designated outcome path. Following the same idea as in [2], we can obtain the folk theorem
if �! 0 and then b! 0. In particular, we can sustain a subgame perfect equilibrium in
which the monopolist generates an expected pro�t close to the static monopoly pro�t.

Proposition 5.1. 8� > 0, 9b > 0, 9y > 1, 8b 2 (0; b), 8y 2 (1; y], 9qf , 8qf 2 [qf ; 1),

9� > 0, 8� 2 (0;�), there is a subgame perfect equilibrium in which the equilibrium
payo� Ws(�) satis�es

Wm
s � � � Ws(�) � Wm

s

where Wm
s is the static monopolist pro�t.

Proof. Apply [2]. ut

Following [2], we di�erentiate two kinds of subgame perfect equilibria: reservation price
equilibria as de�ned in De�nition 2.1, and reputational equilibria, where any deviation by
the monopolist triggers a punishment phase as the continuation game is played according to
the equilibrium constructed in Proposition 4.3. The key idea of [2] is to use the reputational
equilibria to sustain an expected payo� close to the static monopoly pro�t as �! 0. As
it is stated, Proposition 5.1 does not tell us whether the reputational e�ect or the slight
decay is the key for monopolist to generate a large pro�t. To crystallize the impact of a
slight decay, we need to construct a reservation price equilibrium with a large pro�t in a
perishable problem. The main goal of this section is to obtain Proposition 5.1 only with
reservation price equilibria.
As in Section 4, we start with a simple arti�cial game to explore the key properties of

the equilibrium we shall construct. Then, we construct a reservation price equilibrium,
which generates expected pro�t close to the static monopoly pro�t for small b > 0.
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5.1. Example 3. Another Arti�cial Game. The monopolist uses the delay tactic as
a way to inuence the consumer's belief about the future prices o�ered by the monopolist.
Yet, the delay tactic has an obvious downside: the monopolist has to delay the realization
of the pro�t. Because the consumers with high reservation value is willing to pay higher
price, the monopolist has to balance the bene�t of delaying and burning the available
stock against the cost of delaying the pro�t, especially against the high reservation value
consumers.
To explore the tension between these two strategic motivations, let us examine a slightly

more elaborate version of Example 4.1 where the monopolist can only delay the beginning
of the game. Instead, let us allow the monopolist to choose a time interval with length
� > 0 during which he chooses to burn the stock at the instant rate of e�b. Thus, the sales
can occur twice, before and after the � break. Let (q1; q2) represent the total amount of
goods delivered after each sales, and (p1; p2) be the respective delivery prices. That is, at
the beginning of the game, the monopolist charges p1 to serve q1, and then, takes break
for � time. After the break, he charges p2 to serve additional q2 � q1 consumers. As in
Example 4.1, the initial quantity of the goods is y. All other parameters of the models
remain the same as in Example 4.1.
We calculate the optimal solution through backward induction. Suppose that q1 has

been served. Then, y�q1 is available, and the residual demand curve is D(q1; qf ). Through-
out this example, we choose both y > 1 and qf < 1 su�ciently close to 1, and b > 0
su�ciently small. Invoking the same logic as we did in Section 4.1., we have

q2 � q1 = (1� q1)
r + b

r + 2b

and the monopolist has to delay the o�er p2 by � in order to satisfy the market clearing
condition:

(5.21) e�b� (y � q1) = q2 � q1 = (1� q1)
r + b

r + 2b

which implies that

p2 = (1� q1)
b

r + 2b
:

Let �(q1) be the solution for (5.21). Note that

� 0(q1) > 0:

In order to make consumer q1 indi�erent between p1 and p2,

(1� q1)� p1 = e�r�(q1)
�
(1� q1)� (1� q1)

b

r + 2b

�

which implies that

p1 = (1� q1)

�
1� e�r�(q1)

r + b

r + 2b

�
:
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Hence, the pro�t from selling q1 in the �rst round can be written as

V (q1) = q1(1� q1)

�
1� e�r�(q1)

r + b

r + 2b

�
+ e�r�(q1)(1� q1)

2 (r + b)b

(r + 2b)2

= (1� q1)

�
e�r�(q1)

(r + b)b

(r + 2b)2
+ q1

�
1� e�r�(q1)

(r + b)(r + 3b)

(r + 2b)2

��
:

Note that as b ! 0, V (q1) converges uniformly to (1 � q1)q1 over q1 2 [0; qf ]. A simple
calculation shows

V 0(q1) = (1� 2q1)

�
1� e�r�(q1)

(r + b)(r + 3b)

(r + 2b)2

�

�e�r�(q1)
(r + b)b

(r + 2b)2
�

�
(r + b)b

(r + 2b)2
� q1

(r + b)(r + 3b)

(r + 2b)2

�
re�r�(q1)� 0(q1):

As �(q1) is determined by (5.21), �(q1) ! 1 as b ! 0, as long as y > 1. Thus, the �rst
term in the second line vanishes as b ! 0. To show that the second term in the second
line also vanishes, recall (5.21). Thus,

e�r�(q1)� 0(q1) =
~!e�

r!
b

b
where

! = � log
(1� q1)(r + b)

(y � q1)(r + 2b)
> 0

and

~! =
(r + b)� e�b�(q1)(r + 2b)

b(1� q1)
:

Thus,

lim
b!0

e�r�(q1)� 0(q1) = 0

which implies that the second line vanishes as b! 0. Thus,

lim
b!0

V 0(q1) = 1� 2q1;

and the delivery price of q1 converges to p1 = 0:5, which generates the static monopolist's
pro�t. The slow rate of decay combined with a negligible pro�t from the continuation
game makes it credible for the monopolist to delay an acceptable o�er for an extremely
long period.

5.2. Reservation Price Equilibrium with Large Pro�t. The key feature of the equi-
librium constructed in Section 4.2 is that the monopolist can credibly delay to make an
acceptable o�er, when the expected pro�t from accelerating the sale is small. Following
the same logic as in Section 4.2, we can construct another reservation price equilibrium,
which generates the monopolist the static monopolist's pro�t as � ! 0 as illustrated in
Section 5.1.
Imagine an equilibrium that consists of two phases, as in Section 4.2. In each phase, the

monopolist is making a series of acceptable o�ers, denoted as p1;1 and fp2;tg
Tf
t=1 where the

subscript represents the phase and the period within each phase. And, T0 represents the
number of periods during which the monopolist is making unacceptable o�ers. The �rst
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phase consists of a single o�er, which is accepted by q1 consumers. After q1 consumers
are served, the continuation game is played according to the same kind of equilibrium
constructed in Section 4.2: the monopolist makes T0 unacceptable o�ers and then, make
a series of acceptable o�ers for Tf rounds to clear the market. We choose an optimal q1
that maximizes the expected discounted pro�t among all equilibria that have the same
two phase structure as described above.
In order to formalize this idea, we need to make it sure to have a delay equilibrium in

the second phase.

Lemma 5.2. 9q0f < 1; y0 > 1 such that 8qf 2 (q0f ; 1) and 8y 2 (1; y0), 9� > 0 and b > 0

such that 8� 2 (0;�) and 8b 2 (0; b), 9q� such that if q0 > q�, then the acceleration
strategy is optimal, and if q0 < q�, then the delay strategy is optimal for residual demand
D(q0; qf ) with available stock y.

Proof. Since the payo� from the two strategies changes continuously with respect to � > 0,
let us consider the limit case examined in Section 4.1. Fix a residual demand D(q0; qf ) and
the available stock y. From the acceleration strategy, the monopolist obtains qf (1 � qf )
instantaneously. On the other hand, from the delay strategy, he obtains

e�r�(q0)(1� q0)
2 (r + b)b

(r + 2b)2

where �(q0) is de�ned implicitly by (5.21) with q1 replaced by q0. Choose q0f < 1 and

y0 > 1 su�ciently close to 1 so that

qf (1� qf ) < e�r�(q0)(1� q0)
2 (r + b)b

(r + 2b)2

if q0 = 0. We know that � 0(q0) > 0, and also, for a given q0, �(q0) increases without a
bound as b! 0. Thus, for any su�ciently small b > 0, we can �nd a critical q0 where the
above strict inequality holds with equality. This is q�. By the continuity of the expected
payo� with respect to � > 0, we can repeat the same reasoning for a small � > 0 to �nd
q�. ut

Let us consider the initial demand D(0; qf ) and the initial stock. After q1 consumers are
served, the continuation game is played with residual demand curve D(q1; qf ) and available
stock �(y � q1). Since we choose y > 1, and qf < 1, we can invoke Lemma 5.2 to identify
whether the continuation game can sustain the delay strategy as a Nash equilibrium.

Corollary 5.3. 9q0f < 1; y0 > 1 such that 8qf 2 (q0f ; 1) and 8y 2 (1; y0), 9� > 0 and

b > 0 such that 8� 2 (0;�) and 8b 2 (0; b), 9q�1 such that the continuation game after q1
consumers are served can sustain the delay strategy as a Nash equilibrium if and only if
q1 � q�1.

Proof. Note that y > 1 and qf < 1. It is clear that infq1 �(y�q1)�(qf �q1) > 0 as long as
� > 0 is su�ciently small. Thus, 8q1 � qf , the amount of delay, �(q1), de�ned by (5.21)
increases without a bound as b ! 0. The conclusion follows from the same reasoning as
the proof of Lemma 5.2. ut
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From the analysis in Section 5.1, the high expected payo� is sustained by the delay
strategy in the second phase. Thus, if the initial o�er p1;1 is accepted by more than
q�1 consumers, the continuation game strategy must be an acceleration strategy, and the
resulting pro�t is lower than otherwise.
In order to simplify the characterization of the optimal q1, let us assume for a mo-

ment that the continuation game strategy in the second phase is a delay strategy. Let
V (0; qf ; y; q1) be the expected payo� when the monopolist
By invoking the same logic as Lemma 2.3, we can show that Tf <1 and lim sup�!0�Tf <

1. Let us write down the optimization problem of the monopolist for a given q1 = q1(0; �).

V (0; qf ; y; q1) = max
T0�0;q2Q

q1p1;1 + �T0
1X
t=1

p2;t(qt � qt�1)�
t�1(5.22)

such that (1� qt)� p2;t = �((1� qt)� p2;t+1) 81 � t � Tf

(1� q1)� p1;1 = �T0((1� q1)� pT0+1)(5.23)

p2;Tf = 1� qTf(5.24)

�Tf�1�T0

0
@�T0(y � q1)�

Tf�1�T0X
t=1

��t(qt � qt�1)

1
A � 0(5.25)

�Tf�1�T0

0
@�T0(y � q1)�

Tf�1�T0X
t=1

��t(qt � qt�1)

1
A (qTf � qf ) = 0(5.26)

The optimization problem is virtually identical with (B.32). After q1 consumers are served,
the continuation game is played according the equilibrium strategy constructed in Section
4.2 associated with residual demand D(q1; qf ). Then, (5.23) ensures that consumer q1 is
indi�erent between p1;1 and p2;t after T0 periods. Let

Ws(�) = max
q12[0;qf ]

V (0; qf ; y; q1)

and denote the optimal value of q1 as q
e
1.

We can show that the constructed path can be sustained as a reservation price equilib-
rium.

Proposition 5.4. 9b > 0, 9y > 1, 8b 2 (0; b), 8y 2 (1; y], 9qf , 8qf 2 [qf ; 1), the con-
structed outcome path can be sustained as a reservation price equilibrium, which involves
randomization by the monopolist following some histories o� the equilibrium path.

Proof. See Appendix C ut

Recall that given demand curve D(0; qf ), and that

(1� q1)� p1;1 = �T0((1� q1)� p2;1):

Let b! 0. From the analysis of Section 4.1, we know that

lim
b!0

lim
�!0

T0 =1:

Hence,
1� q1 � p1;1 ! 0:
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In particular, if q1 = 0:5 which need not be an optimal value qe1, the resulting expected
payo� converges to the static monopoly pro�t. Thus, if we choose q1 optimally, the
resulting pro�t Ws(�) must converge to the static monopoly pro�t.

Proposition 5.5. 8� > 0, 9b > 0, 9y > 1, 8b 2 (0; b), 8y 2 (1; y], 9qf , 8qf 2 [qf ; 1),

9� > 0, 8� 2 (0;�), there exists a reservation price equilibrium in which the monopolist's
expected pro�t is Ws(�) such that Wm

s � Ws(�) + � where Wm
s is the static monopolist

pro�t.

6. Concluding Remarks

6.1. Delayed o�er. In order to highlight the impact of the perishability to the Coase
conjecture, we literally follow the rule of the classic durable goods monopoly problem,
forcing the monopoly to announce an unacceptable price in order to delay the game.
Thus, the delay occurs as a positive integer multiple of � > 0.
A more general, perhaps more natural, formulation would be to let the monopolist to

delay the bargaining continuously. That is, following each history, the monopolist can
choose a pair of numbers, (p; �): p is o�ered but the good is delivered to the consumer
� unit of time after p is accepted. Given p, consumers decided to accept or reject. If
the o�er is rejected, then the monopolist has to wait � > 0 unit of time before making
another move. If p is accepted, the consumption of the good occurs in � units of time
after accepting the o�er.
In the classic problem, the monopolist has no reason to delay: � = 0 following every

history.7 Thus, the Coase conjecture holds. Because the monopolist can delay the bar-
gaining continuously, the analysis is in fact simpler and closer to the examples where we
assume that the game is delayed continuously.

6.2. Increasing Demand. The strategic impact of the decay arises from the fact that the
excess demand for the goods increases as fewer goods become available. One can apply
the same logic of the perishable problem to the case where the demand is expanding.
[12] investigates the dynamic sales problem with new entry of consumers in the market.
Because the goods are sold to the high valuation consumers, the remaining consumers
have lower reservation value and the residual demand curve becomes more elastic. As a
result, the seller o�ers a low price in order to clear the market occasionally. We except
a similar dynamics. But, we also expect that the monopolist may not serve some low
valuation consumers by burning o� existing stock, which results in considerably delay in
o�ering sales price to clear the market. Formal analysis is left as a future research project.

6.3. Endogenous Stock. Cement is an example of perishable durable goods [11]. After
it is delivered to the consumer, it generates utility to the consumers over many periods.
However, while in the storage, a small portion of cement is hardened and rendered useless.
Because of its weight, it is not unusual that the delivery of cement is scheduled over a
certain interval. The present model provides insight about how the sales of cement can
evolve after a �xed batch of cement is delivered, as we assume that the initial available stock

7This is true because the monopolist has no private information. If the monopolist has private infor-
mation, then the analysis of [1] implies that the monopolist may have incentive to delay.
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is exogenous. It remains to be analyzed how the pricing rule changes, if the monopolist
can control the delivery schedule and quantity as well as the pricing after the delivery.
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Appendix A. Construction of Strategies off the Equilibrium Path

Note that if � consumers purchase the good in this round with state (x; y), then the state at the end of
this round is (x��; y��). Then, at the beginning of the next round, the state becomes (x��; �(y��)).

If the initial state (0:5; y) is above U(k�), then the construction of the actions o� the equilibrium path
follows the same idea as the weak stationary equilibrium in [10] with minor twist. We only describe the
case where the monopolist charges 3 � 2� along the equilibrium path. Let U� be the half line passing
through the origin along which the monopolist is indi�erent between charging 1 and 3� 2�. Let �� be the
slope of U�. One can easily show that

�
�
> �(k�) > 1:

If the initial equilibrium o�er is 3� 2�, then the initial state is located between U� and U(k�).
If p > 3�2�2, then no consumer accepts the o�er, expecting that in the following period, the monopolist

will charge 3� 2�. If p < 3� 2�, then every consumer purchases the good. The state moves from (0:5; y)
to (0; y � 0:5), which implies that the monopolist has some goods for future sale, because y > 0:5. In the
next round following such p, the monopolist charge 1 to serve all low valuation consumers.

If 3� 2� < p < 3� 2�2, we �rst locate a point along

y =
��

�
x

that intersects with the 45 degree line passing through initial state (0:5; y). Let (0:5� x�; y � x�) be such
a point. Such p is accepted by x� portion of high valuation consumers who expects that in the following
period, the monopolist randomizes between 1 and 3� 2� with probability � to 1 so that

3� p = �(3� (�+ (1� �)(3� 2�))):

In the following round, �(y � x�) is available and the new state (0:5 � x�; �(y � x�)) is located along U�

where the monopolist is indeed indi�erent between 1 and 3� 2�.
If state (x; y) is below U(k�) but y < x, then the high valuation consumer accepts any o�er p < 3.

Finally, suppose that state (x; y) is below U(k�) but y > x. For simplicity, let us assume that the monopolist
is indi�erent between charging 3 and 3�2� along U(k�). The other case follows from the same logic, where
the monopolist is indi�erent between charging 3 and 1 along U(k�).

The monopolist is charging 3 in the equilibrium. If he charges p > 3, it is clearly optimal for the
consumer to reject the o�er with probability 1. If he charges p � 3� 2�, then every high value consumer
accepts the o�er with probability 1, expecting that the monopolist will charge 1 in the following round.
Indeed, after serving all high valuation consumers, the monopolist still have �(y � x) amount for sale in
the next round. He charges 1 to serve some of the low valuation consumers.

Suppose that the monopolist charges p 2 (3� 2�; 3). Recall that �(k�) > 1. Find a point along

y =
�(k�)

�
x

that intersects with the 45 degree line passing through the given state (x; y). Let (x � x0; y � y0) be
the intersection. Given p, x0 portion of consumers accepts the o�er, expecting that the monopolist will
randomize between 3 and 3 � 2� in the following round. Indeed, in the following round, the state is
(x � x0; �(y � y0)) which is located on U(��), where the monopolist is indi�erent between charging 3 � �

and 3.
This completes the construction of the equilibrium strategy. It remains to verify that this con�guration

constitutes a perfect equilibrium, except for the part where the monopolist cannot bene�t from accelerating
the sales. In particular, given the fact that the monopolist has to charge 3 which is not accepted by any
buyer for a long time, it is not obvious whether or not a slight price cut can increase the pro�t of the
monopolist.

To complete this part of the proof, let us �x state (x; y). If y � x, then the equilibrium o�er 3 is
accepted with probability 1. Thus, it is obvious that the monopolist has no incentive to lower his price.

If y > 1

�k
� x, then the continuation game is played according to the subgame perfect equilibrium for the

classic problem, because the acceleration is optimal.
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If 1

�k
� x � y < x, the equilibrium dictates the monopolist to use the delay strategy by continuously

charging 3, which is rejected by the consumers until the available stock falls below x.
If p0 > 3, the continuation game play is exactly the same as along the equilibrium path. It remains to

construct the continuation game strategy following p0 < 3 for each state (x; y) where 1

�k
� x � y < x.

Given (x; y), de�ne

`(x; y) = min
`=1;2;:::

f` : �`
y � xg

as the �rst time when the existing stock falls below the size of the high valuation consumers. Let `0 = k�.
De�ne F(`0) as the collection of states (x; y) satisfying

9�; such that �(y ��) =
1

�`0�1
(x��)(A.27)

3� + �(3(y ��)(��)`0) � (��)`(x;y)y:(A.28)

Imagine that the monopolist charges a price p0 < 3 which is very close to 3. If (x; y) 2 F(`0), then we
can �nd a portion of high valuation consumers such that after � portion of high valuation consumers is
served, the monopolist is indi�erent between the acceleration and the delay strategies, as (x��; �(y��))
is located over

�(y ��) =
1

�`0
(x��)

according to (A.27). By deviating to p0 < 3, the maximum payo� from the deviation is given by the left

hand side of (A.28), which does not exceed the equilibrium payo� (��)`(x;y)y.
It is easy to show that

F(`0) 6= ;

and F(`0) is a cone, and one of its boundary is f(x; y) : y = 1

�k
� xg. To identify the other boundary of

F(`0), de�ne
`1 = inff`(x; y) : (x; y) 2 F(`0)g

which is clearly strictly less than `0, since 8(x; y) in F(`0), `(x; y) < k� = `0.
Given `0; `1; : : : ; `j�1, de�ne F(`j�1) as the collection of states (x; y) satisfying

9�; such that �(y ��) =
1

�`j�1�1
(x��)(A.29)

3� + �(3(y ��)(��)`j�1) � (��)`(x;y)y(A.30)

and

`j = inff`(x; y) : (x; y) 2 F(`j�1)g

Since `0 > `1 > : : : > `j , this process must stop in �nite steps:

k
� = `0 > `1 > : : : > `j > : : : > `:

By the construction, F(`0); : : : ;F(`) forms a partition of

f(x; y) : x � y �
1

�k�
xg:

Now, we are ready to spell out the strategy o� the equilibrium path. As a �rst step, choose (x; y) 2 F(`0)
and �x p0 < 3. If p0 < 3�2�, every high valuation consumer accepts the o�er, expecting that the monopolist
will charge 1 in the following round. If 3�2� � p0 < 3, then � portion of the high value consumers accepts
the o�er according to (A.27). Then, in the following round, the monopolist randomizes between 3 � 2�
(acceleration strategy) and 3 (delay strategy) with probability � to 3 such that

3� p
0 = �((1� �)(3� 3) + �(3� (3� 2�)) = 2��2

to ensure that the high valuation consumers are indi�erent between accepting and rejecting p0. By (A.28),
the constructed strategies ensure that the monopolist has no incentive to deviate to p0 from his equilibrium
price 3.

For a general case, choose (x; y) 2 F(`j�1) and �x p0 < 3. If p0 < 3 � 2�, then every high valuation

consumer accepts the o�er, expecting that the monopolist will charge 1 in the following round. If 3�2�j
0

�



PERISHABLE DURABLE GOODS 25

p0 < 3 � 2�j
0+1 for j0 < j, then choose �0 such that �(y ��0) = 1

�j
0
�1

(x ��0). The continuation game

follows the equilibrium strategies constructed for F(`j0�1). If 3 � 2�j � p0 < 3, then choose � 2 [0; 1] so
that

3� p
0 = 2�j�

to ensure that the high valuation consumer is indi�erent between accepting and rejecting p0. Choose
� according to (A.29), which represents the portion of high valuation consumers who accept p0. After
� portion of consumers accepts the o�er, the continuation game is played according to the equilibrium
strategy constructed for the states in F(`j�2). (A.30) ensures that the monopolist has no incentive to
deviates to p0 from his equilibrium o�er 3.

Appendix B. Proof of Proposition 4.2

We have to calculate the optimal strategy of the monopolist for all feasible con�gurations of D(q0; qf ) and
y. However, we can exploit the linearity of the demand curve to simplify the characterization substantially.

Lemma B.1. Suppose that p = fptg and q = fqtg are the optimal pricing and the quantity sequences
of the constrained optimization problem (B.32) associated with D(0; qf ) and y, and it takes Tf periods to
clear the market. If the demand curve is given by D(1 � �; 1 � � + �qf ) and the initial stock is �y, then
�p and �q are the solution, and the trading is completed exactly in Tf periods. This relation holds 8b � 0
(both for the perishable and for the classic problems).

Proof. The proof follows from the fact that the objective function and the constrains are linear functions
of qt � qt�1. ut

Instead of all three parameters (q0; qf ; y), we assume without loss of generality q0 = 0, and consider an
arbitrary pair (qf ; y) to characterize the optimal strategy of the monopolist.

Fix q; q0 2 [0; qf ] and de�ne

(B.31) yf (q0; q) = sup

(
TX
t=1

(qt � qt�1)�
�t : 9T � 1; 9q0 � q1 � � � � � qT = q; satisfying (B.33)

)
:

yf (q0; q) is the minimal stock needed to serve the residual demand D(q0; q) if the monopolist begins to o�er
an acceptable o�er immediately. That is, if the monopolist begins to make an acceptable o�er to meet
residual demand D(q0; qf ), the available stock must be yf (q0; q).

Lemma B.2. yf (q0; q) is a strictly decreasing continuous function of q0 but a strictly increasing continuous
function of q.

Proof. By the construction of yf (q0; q), it is obvious that yf (q0; q) is a decreasing continuous function of
q0. The continuity follows from the fact that in each period, the objective function is strictly concave,
which is implied by the linearity of the demand curve [9]. To show that yf (q0; q) is a strictly increasing
function of q < 1, we assume without loss of generality that q0 = 0 to simplify notation.

For � < 1 which is close to 1, consider D(0; q) and D(1��; (1��)+�q). By Lemma B.1, we know that
the two residual demand curves generate essentially identical optimal solution, except that the solution
from the second residual demand curve is obtained by multiplying � to the optimal pricing and the optimal
quantity solutions of the �rst residual demand curves. Let Tf (0; q) and Tf (1��; 1��+�q) be the number
of periods needed serve the demand curve. We know that

Tf (0; q) = Tf (1� �; 1� �+ �q):

Given a new demand curve D(0; (1� �) + �q), the monopolist has a feasible pricing sequence that serves
1� � in the initial round, and then follow the optimal pricing sequence induced by D(1� �; 1� �+ �q).
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Thus,

yf (0; (1� �) + �q) � (1� �)��Tf (1��;1��+�q)�1 + �
�1

Tf (1��;(1��)+�q)X
t=1

(qt � qt�1)�
�t

=
(1� �) + yf (1� �; (1� �) + �q)

�
=

(1� �) + �yf (0; q)

�
:

We can �nd �0 < 1 such that 8� 2 (�0; 1),

1� � > (� � �)yf (0; q)

which implies that
(1� �) + �yf (0; q)

�
> yf (0; q):

Then, 8� 2 (�0; 1),
yf (0; 1� �+ �q) > yf (0; q):

Since the strict inequality holds for a small neighborhood of any q < 1, we conclude that yf (0; q) is a
strictly increasing function of q < 1. Continuity follows from the maximum principle combined with the
fact that the objective function is strictly concave, which is again implied by the linearity of the demand
curve. ut

Clearly,
q � yf (0; q):

If yf (0; q) � y, then the existing stock is too small to serve D(0; q). Since yf (q0; q) is strictly decreasing in
q0, we can �nd q0 � 0 such that

yf (q0; q) = y:

The constrained optimal pricing rule is thus an acceleration strategy de�ned as follows.

De�nition B.3. An acceleration strategy is an outcome path in which the monopolist serves q0 imme-
diately, and then follows the optimal pricing sequence associated with D(q0; q). The initial o�er p0 is
determined according to

1� q0 � p
0 = �((1� q0)� p1)

where p1 is the initial o�er from the optimal pricing sequence associated with D(q0; q).

If yf (0; q) � y, then the existing stock is too large to credibly serve q, because the terminal condition
(B.34) does not hold for y. The monopolist follows another outcome path, a delay strategy, de�ned as
follows.

De�nition B.4. A delay strategy is an outcome path in which the monopolist makes unacceptable o�ers
for T1 periods, where

T1(0; q; y) = inf
n
T : e�b�T

y � yf (0; q)
o

and then, follows the acceleration strategy.

Consider the following optimization problem:

max
T1�0;q2Q

�
T1

TfX
t=1

pt(qt � qt�1)�
t�1(B.32)

(1� qt)� pt = �((1� qt)� pt+1)(B.33)

pTf = 1� qTf(B.34)

�
Tf

0
@�

T1y �

TfX
t=1

�
�t(qt � qt�1

1
A � 0(B.35)

�
Tf

0
@�

T1y �

TfX
t=1

�
�t(qt � qt�1)

1
A (qTf � qf ) = 0:(B.36)
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A natural state variable is the residual demand D(q0; qf ) and the available stock at the time when the
monopolist makes the decision. By a state, we mean a triple (q0; qf ; y) representing residual demand and
the available stock.

Let q�(0; qf ; y) be the total amount of goods served in an optimal solution of (B.32) where the state
is (0; qf ; y). If q�(0; qf ; y) = qf , then the associated optimal pricing sequence is precisely the optimal
pricing sequence from the classic problem, because (B.35) constraint is not binding. Otherwise, (B.35)
constraint is binding, and inevitably, some consumers are not served as the available goods are burned o�,
and therefore, the optimal solution should be a delay strategy.

Based on the analysis of the optimal strategy under state (0; qf ; y), we have a \rough" characterization
of optimal strategy for an arbitrary state (q0; qf ; y) and q�(q0; qf ; y) which is the counter part of q

�(0; qf ; y)
for state (q0; qf ; y):

� if q�(q0; qf ; y) � min(qf ; y), the monopolist follows the acceleration strategy, and
� if q�(q0; qf ; y) < min(qf ; y), then the monopolist delays T1(q0; q

�(q0; qf ; y); y) periods before mak-
ing the acceptable o�ers. After making T1(q0; q

�(q0; qf ; y); y) unacceptable o�ers, the monopolist

follows the acceleration strategy associated with state (q0; qf ; e
�b�T1(q0;q

�(q0;qf ;y);y)y).

It is only a rough characterization, because we have yet to identify how many consumers will accept an
o�er p01 which is not an equilibrium o�er. We shall focus the analysis on the deviation from the �rst o�er
in the equilibrium, because the general case follows from the same logic.

We need to consider two separate cases depending upon whether the initial o�er is acceptable (i.e.,
the monopolist follows an acceleration strategy), or the initial o�er is unacceptable (i.e., the monopolist
follows a delay strategy).

B.1. p1 is an acceptable o�er. Fix p01 6= p1. We only examine the case where p01 < p1, because the
other case follows from the symmetric logic. If the acceptable strategy does not bind (B.35), then the
complementary slackness condition implies that

qf = q
�(0; qf ; y):

Since we are considering an acceleration strategy, it is precisely the total number of periods when the
market is open. In this case, the equilibrium strategy o� the equilibrium path is identical with that in the
classic problem. Because the unique subgame perfect equilibrium in the classic problem is a reservation
price equilibrium, the acceleration strategy can be sustained by a reservation price equilibrium. By the
nature of the reservation price equilibrium, a lower than an equilibrium o�er increases the sales in that
period. As a result, (B.35) condition is not binding in any continuation game. That is why we can use the
same reservation price equilibrium strategy of the classic problem, as if the good does not perish.

On the other hand, if the acceptable strategy binds (B.35) so that

qf > q
�(0; qf ; y);

then the equilibrium strategy o� the equilibrium path di�ers from that from the classic problem. Yet, we
can show that an o�er lower than an equilibrium price always increases the sales in that period.

Because (B.35) holds with an equality, the market must be cleared in the sense that the monopolist
sells all available stocks, even though some consumers are not served. Since p1 is an acceptable o�er, all
ensuing o�ers from the monopolist are also acceptable for some consumers. Thus, after q1 consumers are
served,

yf (q1; q
�(q1; qf ; y)) = �(y � q1)

must hold, where the left hand side is the amount of goods needed to serve the remaining consumers in
the continuation game following p1, while the right hand side is the good available at the beginning of the
second round. We can re-write the same equality as

(B.37) q1 +
1

�
yf (q1; q

�(q1; qf ; y)) = y:

Recall the de�nition of yf (q
0; q00). It is clear that

@yf (q
0; q00)

@q00
� 1 and

@yf (q
0; q00)

@q0
� �1:
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Fix p01 < p1, and let q01 and q1 be the mass of consumers who accept p01 and p1, respectively. We claim
that

q
0
1 � q1:

To prove our claim by way of contradiction, suppose that

q
0
1 < q1:

Even though p1 is an acceptable o�er, we have yet to prove that p01 is also an acceptable o�er.

Lemma B.5. If p1 is an acceptable o�er, then 8p01 < p1 is an acceptable o�er.

Proof. Suppose that p01 is not an acceptable o�er (q01 = 0). By the de�nition of a delay strategy, p01 is a
part of a delay strategy. By the de�nition of a delay strategy, the continuation strategy involves T 01 periods
of delay, followed by a sequence of acceptable o�ers. The sequence of acceptable o�ers is identical to the
optimal pricing sequence associated some residual demand D(0; q0) where q0 > q�(0; qf ; y). Thus,

1

�T1
yf (0; q

0) � y:

But, this is impossible. Under the hypothesis of the proof, q01 < q1, which implies

1

�T1
yf (0; q

0) �
1

�
yf (0; q

0) > q1 +
1

�
yf (q1; q

�(0; qf ; y)) = y:

ut

Now, we know p01 < p1 is an acceptable o�er. By the construction, every o�er following p01 is an
acceptable o�er. Thus, all o�ers following p01 is identical to an optimal solution from the classic problem
associated with demand D(q01; q

00) for some q00 � 1. By Lemma 2.3, we know that no two reservation price
functions associated with two demand curves with di�erent lowest reservation value consumers intersect
with each other. In particular, if p01 < p1 and q01 < q1, then the reservation price function associated with
(p01; q

0
1) is located \below" the reservation price function associated with (p1; q1). Since the demand curve

is downward sloping,
q
00
> q

�(0; qf ; y):

Since (B.35) holds following p01, we have

q
0
1 +

1

�
yf (q

0
1; q

00) � y:

From (B.37),

q
0
1 +

1

�
yf (q

0
1; q

00) � y = q1 +
1

�
yf (q1; q

�(0; qf ; y))

which is impossible, because q01 < q1 and q00 > q�(0; qf ; y) imply that

q
0
1 +

1

�
yf (q

0
1; q

00) > q1 +
1

�
yf (q1; q

�(0; qf ; y)):

B.2. p1 is not an acceptable o�er. The construction follows almost the same idea. While there are
many unacceptable o�ers, let us streamline the construction by focusing on a series of \lowest" unacceptable
o�ers. Suppose that the monopolist makes T1 unacceptable o�ers, before making the �rst acceptable o�er
pT1+1. De�ne p1 (t � T1) implicitly as

1� q0 � pt = �
T1�t+1(1� q0 � pT1+1)

or equivalently as

pt = (1� �
T1�t+1)(1� q0) + �

T1�t+1
pT1+1:

In particular, if q0 = 0,

p1 = (1� �
T1)(1� q0) + �

T1pT1+1:

Fix p01 6= p1. As in the previous case, let us focus on the case where p01 < p1. We need to �nd an
optimal strategy with an additional constraint that the initial o�er is p01. By Lemma 2.3, we know that the
initial acceptable o�er is a continuous function of the terminal o�er. Since the initial unacceptable o�er
is a continuous function of the �rst acceptable o�er, it is also a continuous function of the terminal o�er.
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Recall that q�(0; qf ; y) is the equilibrium quantity delivered to the consumers. For each q � q�(0; qf ; y),
Constructing an optimal pricing rule with the terminal condition that pTf = 1� q. Let p�1(q) be the �rst
o�er (which may be unacceptable) in the optimal pricing rule that terminates with pTf = 1� q.

Since p�1(q) is a continuous function of q, 8p01 < p1, there exists q > q�(0; qf ; y) such that p01 = p�1(q).
If p01 = 1� qf , then the consumer must accept the o�er, because the monopolist will never charge a price
lower than 1 � qf . Thus, there exists q0 such that p01 = p�(q0) � 1 � qf is an acceptable o�er. By the
construction of the strategy o� the equilibrium path from the acceptable o�er, we know that the mass of
consumers who accepts p001 � p01 does not decrease.

Appendix C. Proof of Proposition 5.4

Choose the parameters according to Lemma 5.2 so that q� 2 [0; qf ] exists. Fix the outcome path
associated the optimal value qe1. We need to construct the strategy o� the equilibrium path. We focus
on the initial o�er, because we already know that the second phase can be sustained by a reservation
price equilibrium, if qe1 � q�. If we choose the parameters according to Lemma 5.2, then qe1 � q� for any
su�ciently small � > 0.

Fix p01 6= p1;1. We focus on the case p01 < p1;1, because the other case follows from the symmetric
reasoning. Since p1;1 must satisfy (5.23), 8p01 there exists q01 and a delay strategy in D(q01; qf ) with the
available stock �(y � q01) such that

1� q
0
1 � p

0
1 = �

T 0
0(1� q

0
1 � p

0
2;1)

where T 00 and p02;1 are the number of unacceptable o�ers and the initial o�er in the delay strategy associated
with state (q01; qf ; �(y�q01)). Since the initial o�er of the delay strategy associated with state (q01; qf ; �(y�
q01)) is continuous function of q01, we can choose

(C.38) q1(p
0
1) = supfq01 : there is a delay strategy associated with (q01; qf ; �(y � q

0
1)) satisfying (5.23)g:

Remark C.1. In the limit as � ! 0 and b ! 0, the initial o�er to serve q1 becomes 1 � q1. Thus, for
each p01 < p1;1, we can associate q01 > qe1, which implies that a lower price is always accepted by more
consumers. However, for a positive � > 0, this sort of monotonicity may fail. Note that the amount of
delay in the continuation game is determined by the time needed to achieve the desired target level of the
stock. We know that as more consumers are served in the �rst phase, it will take more time to achieve the
desired target level. Let q1; p1;1; p2;1; T0 be the size of consumers served by p1;1, the initial o�er, the �rst
acceptable o�er of the second phase and the number of unacceptable o�ers. Recall that 8� > 0, 8b > 0,

1� q1 � p1;1 = �
T0(1� q1 � p2;1) > 0:

Since T0 is increasing as q1 increases, it is possible that 1� q1 � p1;1 is decreasing as q1 is increasing and
p1;1 is decreasing. Because of this possible failure of monotonicity, (C.38) may not generate a decreasing
function for � > 0 and b > 0, although it does in the limit. To address this issue, we need to do some
additional work.

Note that qe1 has to converge to 0.5, which generates the maximum pro�t in the limit. We can choose
the parameters according to Lemma 5.2 so that qe1 < q�, and the initial o�er associated with the original
demand D(0; qf ) is within � neighborhood of 1 � qe1, while the initial o�er associated with the residual
demand D(q�; qf ) is also within � neighborhood of 1� q�.

Thus, the initial o�er p1;1 changes from the neighborhood of 1�qe1 to the neighborhood of 1�q�, which
is smaller than 1 � qe1. We know the mapping q1 7! p1;1 may not be strictly decreasing over [qe1; q

�] but
the value around qe1 is strictly larger than the value around q�, if � is su�ciently small. Therefore, (C.38)
is a strictly decreasing function.

De�ne

p
�
1 = supfp1;1 � 1� qf : q1(p

0
1) � q

�g:

The right hand side is not empty, because if the monopolist o�ers 1 � qf , all consumers must accept
immediately. In fact, if q�1 = 1� qf , then the proof is completed, as we have already shown that whenever
the monopolist deviates to a lower price, more consumers accept the o�er.
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Suppose that p�1 > 1� qf . Then, 8p
0
1 < p�1, the continuation game cannot sustain the delay strategy as

a Nash equilibrium outcome. As a result, we need a randomization by the monopolist to smooth out the
transition from the delay strategy to the acceleration strategy.

Consider a continuation game after q� consumers are served. The residual demand is D(q�; qf ) and the
available stock is �(y � q�). By the de�nition of q�, both the acceleration and the delay strategies are
optimal. Let pa2;1 be the initial o�er of the acceleration strategy, and pd2;1 be the initial o�er of the delay
strategy, which is o�ered after T0 periods. Since p01 < p�1,

1� q
� � p

0
1 > �

T0(1� q
� � p

d
2;1):

If p01 > pa2;1, then

1� q
� � p

a
2;1 > 1� q

� � p
0
1:

Choose � 2 (0; 1) so that

1� q
� � p

0
1 = ��

T0(1� q
� � p

d
2;1) + (1� �)(1� q

� � p
a
2;1):

That is, the consumers expect that the monopolist randomize over two strategies so that q� consumer is
indi�erent between accepting and rejecting p01.

If p01 � pa2;1, the consumers expect that the monopolist follow an acceleration strategy. The continuation
strategy is identical to the continuation game following a deviation from an acceptable o�er (which in this
case is pa2;1.
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