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Abstract

We present sufficient conditions for monotone matching in environ-
ments where utility is not fully transferable between partners. These
conditions involve complementarity in types not only of the total pay-
off to a match, as in the transferable utility case, but also in the degree
of transferability between partners. We apply our conditions to study
some models of risk sharing and incentive problems.
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1 Introduction

For the economist analyzing household behavior, firm formation, or the labor
market, the characteristics of matched partners are paramount. The educa-
tional background of men and women who are married, the financial positions
of firms that are merging, or the productivities of agents who are working
together, all matter for understanding their respective markets. Matching
patterns serve as direct evidence for theory, figure in the econometrics of
selection effects, facilitate theoretical analysis, and are even treated as policy
variables.
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Much is known about characterizing matching in the special case of trans-
ferable utility (TU). For instance, if the function representing the total payoff
to the match satisfies increasing (decreasing) differences in the partners’ at-
tributes, then there will always be positive (negative) assortative matching,
whatever the distribution of types. Because they are distribution-free, results
of this sort are very powerful and easy to apply.
For an individual contemplating marriage, a firm entering into a joint

venture, or a film producer seeking a director, the partners’ characteristics
are also crucial, for two equally important and possibly conflicting reasons:
they determine the gains from the relationship, and they affect the ability to
share in them. A star director might make for a profitable collaboration, but
if stars are cagey or obstinate, it will be too costly or unpleasant to keep the
film under budget, and the producer might go for someone less well-known
or talented.
Concerns about this effect — imperfect transferability — are not limited to

people in the real world. In much of economic analysis, the utility among
individuals is not fully transferable (“non-transferable,” or NTU, in the par-
lance).1 Partners may be risk averse with limited insurance possibilities; in-
centive or enforcement problems may restrict the way in which the joint
output can be divided; or policy makers may impose rules about how out-
put may be shared within relationships. As Becker (1973) pointed out long
ago, rigidities that prevent partners from costlessly dividing the gains from
a match may change the matching outcome, even if the level of output con-
tinues to satisfy monotone differences in type.
While interest in the issues represented by the non-transferable case is

both long-standing and lively (see for instance Farrell-Scotchmer, 1988 on
production in partnerships; Rosenzweig-Stark, 1989 on risk sharing in house-
holds; and more recently, Lazear, 2000 on incentive schemes for workers;
Ackerberg-Botticini, 2002 on sharecropping; and Chiappori-Salanié, 2003 on
the empirics of contracts), for the analyst seeking to characterize the equilib-
rium matching pattern in such settings, there is little theoretical guidance.
The purpose of this paper is to offer some. We present sufficient conditions

for assortative matching that are simple to express, intuitive to understand,
and, we hope, tractable to apply. We illustrate their use with some examples
that are of independent interest.
The class of models we consider are two-person matching games without

1This terminology dates from the 1950’s and refers to all models that depart from
the transferable utility assumption. In some circles, the term nontransferable has been
used to refer solely to the extreme situation in which there is no possibility for making
transfers; this special case will not occupy much of our attention here. Smith (2002) offers
an analysis of that case, with particular attention devoted to search frictions.
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search frictions in which the utility possibility frontier for any pair of agents
is a strictly decreasing function. After introducing the model and providing
formal definitions of the monotone matching patterns, we review the logic of
the classical transferable utility results, a close of examination of which leads
us to propose the “generalized difference conditions” (GDC) that suffice to
guarantee monotone matching for any type distribution (Proposition 1). We
then apply them to a simple model of risk sharing within households.
As it is often easier to verify properties of functions locally than globally,

we also present differential conditions for monotone matching (Proposition 2).
Though stronger than the GDC, the differential conditions offer additional
insight into the forces governing matching. In particular, they highlight
the role not only of the complementarity in partners’ types that figures in
the TU case, but also of complementarity between type and the degree of
transferability (slope of the frontier) that is the new feature in the NTU
case. Even if the output satisfies increasing differences in types, failure of the
type-transferability complementarity — as happens if higher types are more
“difficult” than lower ones — may overturn the predictions of the TU model
and lead instead to negative assortative matching or some more complex
and/or distribution-dependent pattern.
We use the differential conditions to study a model in which principals

with different monitoring technologies are matched to agents with differ-
ent wealths, one interpretation of which may address some puzzling results
concerning the assignment of peasants to crop types in the empirical share-
cropping literature. In the example, the type-transferability relationship is
responsible for the predicted matching pattern, which goes in a (possibly)
unexpected direction.
We then go on to discuss other techniques that facilitate application of

the generalized difference conditions. For instance, the truth of the GDC
depends only on the ordinal properties of preferences (Proposition 4); this
fact broadens the scope of applicability of the local conditions (Corollary
1). We also consider the relationship between the GDC and more familiar
difference conditions, including lattice theoretic notions (Propositions 5 and
6), and devote some attention to necessary conditions for monotone matching
(Proposition 7).
The next section delves further into the ideas underlying the general the-

oretical analysis by examining a very simple example. It then introduces the
two models that will be used to illustrate the application of our results.
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2 Issues and Examples

How do nontransferabilities affect the matching pattern? Consider the fol-
lowing example, which is inspired by the one in Becker (1973).

Example 1 Suppose there are two types of men, l < h, and two types of
women, L < H. The total “output” they produce when matched, as a function
of the partners’ types, is described by the matrix

L H
l 4 7
h 7 9

.

Note that the output function satisfies decreasing differences (DD), since
9 − 7 < 7 − 4. If utility is fully transferable, then it is well known that de-
creasing differences implies that a stable outcome will always involve negative
assortative matching (NAM): high types will match with low types. If to the
contrary we had a positive match of the form hl, Li, hh,Hi with equilibrium
payoffs (ul, uL) and (uh, uH), then there would always be a pair of types that
could do strictly better for themselves: ul + uh = (4 − uL) + (9 − uH) <
(7 − uH) + (7 − uL); thus ul < 7 − uH or uh < 7 − uL; l could offer H
(or h could offer L) slightly more than her current payoff and still get more
for himself, destabilizing the positive match. The negative matching outcome
maximizes total output.
Suppose instead that utility is not perfectly transferable, and consider the

extreme case in which any departure from equal sharing within the marriage
is impossible. For instance, the payoff to the marriage could be generated by
the joint consumption of a local public good. Thus each partner in hh,Hi
gets 4.5, each in hh,Li gets 3.5, etc. Now the only stable outcome is positive
assortative matching (PAM): each h is better off matching with H (4.5) than
with L (3.5), and thus the “power couple” blocks a negative assortative match.
As Becker noted, with nontransferability, the match changes, and aggregate
performance suffers as well.

Of course this extreme form of nontransferability is not representative of
most situations of economic interest, and we wonder what happens in the
intermediate cases.

Example 2 Modify the previous example by introducing a dose of transfer-
ability: some compensation, say through the return of favors, makes it possi-
ble to depart from equal sharing. Consider two simple cases. In the first, the
high types are “difficult,” while the low types are “easy,”: beauty is a beast,
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Figure 1: Utility possibility frontiers for Example 2.

frog is a prince. That is, utility is perfectly transferable between l and L, l
can transfer to H, but not vice versa, and L can transfer to h but not vice
versa. In the second case, the high types are easy and the low types difficult.
See Figure 1, which depicts the utility possibility frontiers between pairs of
types, assuming feasible transfers are made starting from the equal sharing
point.
In the first case, the degree of transferability is decreasing in type, and in

particular is changing in the same direction as (marginal) productivity. The
unique outcome is NAM in this case: if things were otherwise, a high type
could promise a low type almost 2.5, garnering a bit over 4.5 for itself, and
the low type will be happy to accept the offer (the only way this could not
happen is if both l and L were getting at least 2.5, which is an impossibility).
In the second case, the degree of transferability is increasing in type, op-

posite the direction that productivity increases, and this opposition between
productivity and transferability is enough to overturn the TU outcome. The
easygoing high types now can get no more than 3.5 out of a mixed relation-
ship, so they prefer a match with each other, wherein 4.5 would be available
to each.
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The basic intuitions contained in this second example carry over to the
general case, and are in a nutshell the content of our main results, Proposi-
tions 1 and 2.2 Transferability, and its dependence on type, can be as impor-
tant as productivity in determining the nature of sorting.
In the remainder of this section we present two less-contrived examples

that are representative of those considered in the literature. The first is a
marriage market model in which partners vary in initial wealth (and risk at-
titude) and must share risks within their households. Although this topic has
attracted considerable attention in the development literature and economics
of the family, we are not aware of any attempts to establish formally what
the pattern of matching among agents with differing risk attitudes would
be, something which is obviously important for empirical identification, say
of risk-sharing versus income-generation motives for marriage and migration
(Rosenzweig-Stark, 1989).
The second is a principal-agent model in which agents vary in their initial

wealth (and therefore risk aversion), and principals vary in their ability to
monitor agents. Sorting effects in this sort of model are of direct interest in
some applications (e.g., Newman, 1999; Prendergast, 2002) and are impor-
tant considerations in the econometrics of contracting (Ackerberg-Botticini,
2002).

Example 3 (Risk sharing in households). Consider a stylized marriage
market model in which the primary desideratum in choosing a mate is suit-
ability for risk sharing. We ignore gender in what follows, i.e., study a
“one-sided” model.

Suppose that household production is random, with a finite number of possi-
ble outcomes wi > 0 and associated probabilities πi. Each individual initially
has one unit of wealth; upon marriage, each receives a monetary wedding gift
from its parents, which is assumed to be proportional to the parents’ wealth.
Everyone is an expected utility maximizer; income y yields utility ln y, and an
individual’s type is the wealth a > 0 received as the wedding gift. Unmatched
agents receive no gift and therefore get utility zero. For informational or
enforcement reasons, the only risk sharing possibilities in this economy lie
within a household consisting of two agents. When partners match, their
(explicit or implicit) contract specifies how each realization of the output will
be shared between them.

2The only difference is that we shall require the frontiers to be strictly decreasing; the
above examples could easily be modified to conform to this requirement without changing
any conclusion.
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Write the utility possibility frontier for a match between individuals of types
a and b as a function φ of b’s payoff v; it is generated by solving the optimal
risk sharing problem:

φ(a, b, v) ≡ max
{xi}

Σiπi ln(1 + a+ wi − xi) s.t. Σiπi ln(1 + b+ xi) ≥ v, (1)

Note that the wealth, including that received from the parents, can be trans-
ferred as part of the share in this set-up. The first-order condition (known
as Borch’s rule) is 1

1+a+wi−xi = λ 1
1+b+xi

, where λ is the multiplier on the
constraint, from which one solves for the optimal sharing rule:

xi = (wi + a+ b+ 2)e
v−Σiπi ln(wi+a+b+2) − b− 1.

This yields

φ(a, b, v) = ln(1− ev−Σiπi ln(wi+a+b+2)) + Σiπi ln(wi + a+ b+ 2). (2)

Clearly, this function is not linear in v, so utility is only imperfectly
transferable: the cost to a of transferring a small amount to b depends on how
much each partner already has. The same is true of the following example.

Example 4 (Matching principals and agents). Principals, who differ in
their ability to monitor effort, must match with agents, who differ in ini-
tial wealth and therefore risk aversion. The question is whether the most
closely monitored tasks, which can be compensated via low-risk contracts,
are accepted by the most or least risk averse, i.e. the poorest or wealthiest
agents. Possible interpretations in include the occupational distinction be-
tween entrepreneurs and workers (the former bear much risk, the latter little
or none), the assignment of fund managers to different portfolios, or the
assignment of crop varieties to peasants with different wealth levels.
There is a continuum of risk-neutral principals with type indexed by p ∈

[p, 1], p ∈ (1
2
, 1), and an equal measure of agents with type index a > 1. The

principal’s type is the probability that his agent’s effort e, which can either
be 1 or 0, is correctly detected on his task. All tasks are equally productive,
yielding expected revenue π when effort is high, and every principal wishes to
implement e = 1 (this amounts to assuming that p is sufficiently high). All
agents derive utility ln y from income y; their type represents initial wealth.
The frontier for a principal of type p who is matched to an agent of type

a is given by

φ(p, a, v) = max π − pw1 − (1− p)w0
s.t. p ln(a+ w1) + (1− p) ln(a+ w0)− 1 ≥ v

p ln(a+ w1) + (1− p) ln(a+ w0)− 1 ≥ (1− p) ln(a+ w1) + p ln(a+ w0),
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where w1 and w0 are the wages paid in case the signal of effort is 1 or 0
respectively. The second inequality is the incentive compatibility condition
that ensures the agent takes high effort. The frontier for an agent of type a
matched to a principal of type p who gets v is

φ(a, p, v) = max p ln(a+ w1) + (1− p) ln(a+ w0)− 1
π − pw1 − (1− p)w0 s.t. ≥ v

p ln(a+ w1) + (1− p) ln(a+ w0)− 1 ≥ (1− p) ln(a+ w1) + p ln(a+ w0),

The solution to these problems yields

φ(p, a, v) = π + a− ev+1[pe 1−p
2p−1 + (1− p)e− p

2p−1 ] (3)

and

φ(a, p, v) =
1− p
2p− 1 + ln

Ã
π + a− v

pe
1

2p−1 + 1− p

!
(4)

Intuition might suggest that since wealthier agents are less risk averse,
they should be matched to tasks for which the signal quality is poor, since these
tasks are effectively riskier. Indeed, when p = 1, the optimal contract is a fixed
wage, since in equilibrium the agent will always generate the high effort signal,
while for lower values of p the agent must bear some income risk. As we shall
see in Section 5.1 , this intuition is incomplete, and indeed misleading, and
the complete analysis can offer an explanation for some seemingly puzzling
results in the empirical literature.

As with expression (2), (3) and (4) depict nontransferable utility models
in which the frontiers, though downward sloping, do not have constant unit
slope. As we have shown, the traditional techniques for determining matching
patterns do not apply in these cases. We shall revisit these examples as we
present our general results in order to illustrate their application. As it turns
out, these examples are both solvable by a variety of techniques.

3 Theoretical Preliminaries

The economy is populated by a continuum of agents who differ in type,
which is taken to be a real-valued attribute such as skill, wealth, or risk
attitude. In the two-sided model, agents are also distinguished by a binary
“gender” (man-woman, firm-worker, etc.). Payoffs exceeding that obtained in
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autarchy, which for the general analysis we normalize to zero for all types,3 are
generated only if agents of opposite gender match. In the one-sided model,
there is no gender distinction, but positive payoffs still require a match (in
neither case is there any additional gain to matching with more than one
other agent). For simplicity, we will assume that the measure of agents on
each side of a two-sided model is equal. The type space A is a compact
subset of the real line (or such a set crossed with {0, 1} in the two-sided
case4). The number of types may be finite or infinite, and we think of there
being a continuum of each type.
The object of analytical interest to us is the utility possibility frontier

(since in equilibrium agents will always select an allocation on this frontier)
for each possible pairing of agents. This frontier will be represented by a
function φ(a, b, v) which denotes the maximum utility generated by a type a
in a match with a type b who receives utility v. We take φ to be a primitive
of the model for the general analysis, although as in the examples we have
presented, it will often be derived from more fundamental assumptions about
technology, preferences and choices made by the partners after they match.
We shall sometimes refer to the first argument of φ as “own type” and the
third argument as “payoff.”
We assume throughout that this function is continuous and strictly de-

creasing in v and continuous in the types. If φ(a, b, v) can be written f(a, b)−
v, we have transferable utility (TU); otherwise, we have nontransferable util-
ity (NTU).
The maximum equilibrium payoff that a could ever get in a match with

b is φ(a, b, 0), since b would never accept a negative payoff. By slight abuse
of notation, if v > φ(b, a, 0), we will define φ(a, b, v) = 0. Note that φ(a, b, v)
is still strictly decreasing in [0,φ(b, a, 0)] and that φ(b, a,φ(a, b, v)) = v for
all v in this interval: φ(b, a, ·) and φ(a, b, ·) are inverses there. In general, of
course, φ(a, b, v) 6= φ(b, a, v).
The notation reflects two further assumptions of matching models, namely

(1) that the payoff possibilities depend only on the types of the agents and
not on their individual identities; and (2) the utility possibilities of the pair
of agents do not depend on what other agents in the economy are doing, i.e.,
there are no externalities across coalitions.5

3In many applications, the autarchy payoff varies with type. For instance, in the
principal-agent example it is natural to assume that an unmatched agent a gets ln a. The
analysis extends to this case almost without modification: see Section 5.5.

4In this case, it is to be understood that in comparing types, one only considers at-
tributes of agents from the same side, i.e., “a > b and c > d” entails that a and b are on
one side, and c and d are on the other.

5Of course, in general, the equilibrium payoffs in one coalition will depend on the other
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3.1 Equilibrium

It is useful to identify equilibrium with core allocations: we are interested in
specifying the way types are matched and the payoff to each type. Specifi-
cally, an equilibrium consists of a matching correspondenceM∗ : A⇒ A that
specifies the type (s) to which each type is matched, and a payoff allocation
u∗ : A→ R specifying the equilibrium utility achieved by each type (Lemma
1 below ensures that u∗ is a function; we will write u∗a for its value at a).
The key property it satisfies is a stability or no-blocking condition: if u∗ is
the equilibrium payoff allocation, then there is no pair a, b and payoff v such
that φ(a, b, v) > u∗a and v > u

∗
b . In addition to this requirement, u

∗ must sat-
isfy feasibility (if a and b are matched, then u∗a ≤ φ(a, b, u∗b) and individual
rationality u∗a ≥ 0 for all a), and M∗ must be measure consistent, i.e., the
measure of first partners must equal the measure of second partners (this
requirement arises because of the continuum of agents: it avoids situations
in which, say, one one-millionth of the population matches one-to-one with
the rest). Equilibria always exist under our assumptions.6

3.2 Descriptions of Equilibrium Matching Patterns

A match is a measurable correspondence

M∗ : A⇒ A.

M∗ is symmetric: a ∈M∗ (b) implies b ∈M∗ (a) . Let

A = {a ∈ A : ∃b ∈M∗ (a) : a ≥ b}

be the set of larger partners. Obviously, A depends onM∗, but we suppress
this dependence in the notation. Note that in the case of two-sided matching,
we identify A with one of the sides.
Symmetry of M∗ implies that the correspondence M

M : A⇒ A,where b ∈M (a)⇐⇒ b ∈M∗ (a) & a ≥ b,
completely characterizes the match. The coalitions generated by M∗ can
then be written as ordered pairs ha, bi ∈ A ×M(A). Our descriptions of
coalitions.

6The facts that there is a continuum of agents and that the only coalitions that matter
are singletons and pairs make the core here a special case of the f -core. See Kaneko-
Wooders (1996) for definitions and existence results – with a continuum of types, they
also assume that the slopes of the frontiers are uniformly bounded away from zero, a
condition that is satisfied if the marginal utility of consumption at autarchy is not infinite.
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matching patterns will be in terms of the properties of the graph ofM. Note
that for a one-sided model, the graph ofM is the portion of the graph ofM∗

that is on or below the 450 line.
WhenM is a monotone correspondence, matching is monotone. We con-

sider only a few types of monotone matching patterns in this paper. An
equilibrium satisfies segregation if M (a) = {a} for all a. It satisfies posi-
tive assortative matching (PAM) if for all a, b ∈ A, a > b, c ∈ M (a) , d ∈
M (b) =⇒ c ≥ d, and negative assortative matching (NAM) if for all
a, b ∈ A, a > b, c ∈ M (a) , d ∈ M (b) =⇒ c ≤ d. In one sided models,
an alternative way to say that there is NAM is that whenever we have types
a > b ≥ c > d, ha, ci , hb, di and ha, bi , hc, di , as well as segregation, are ruled
out as possible matches (only ha, di , hb, ci is permitted).
Note that while segregation only occurs in one-sided models, PAM and

NAM can occur in both one- and two-sided models. However, in this paper,
when we refer to PAM, we shall be referring exclusively to two-sided models.
Say that an equilibrium is payoff equivalent to PAM if any four types

that are not matched in a positive assortative way can be rearranged among
themselves in a positive assortative way without changing their payoffs (from
which it follows that the new match constructed this way, along with the
original payoffs, is also an equilibrium). 7 Payoff equivalence to segregation
and to NAM are defined analogously. For brevity, we will say that there
is segregation, PAM, or NAM if the equilibrium satisfies the corresponding
notion of payoff equivalence.
For our purposes, the important consequence of payoff equivalence is that

if a, b ∈ A with a > b, c > d, ha, di andhb, ci are matches in an equilibrium
that is payoff equivalent to PAM, then u∗a = φ(a, c, u∗c) and u

∗
b = φ(b, d, u∗d).

7Formally, (M, u∗) is payoff equivalent to PAM if whenever a, b ∈ A, a > b, c > d,
d ∈M(a) and c ∈ M(b), there is another measure consistent match M0 with M0 =M on
A\{a, b}, d ∈M0(b), c ∈M0(a) and either d /∈M0(a) or c /∈M0(b) such that u∗ is feasible.
This falls short of saying that M0 satisfies PAM, but if the type distribution has finite

support and rational values, a straightforward algorithmic argument shows that if (M, u∗)
is an equilbrium in which M violates PAM but is payoff equivalent to it, then there is

another measure-consistent match cM such that (cM, u∗) is an equilibrium that satisfies
PAM. Under standard regularity conditions, a limit argument establishes the same thing
for arbitrary distributions.
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4 Sufficient Conditions for Monotone Match-

ing

4.1 Logic of the TU Case

Before proceeding, let’s recall the nature of the conventional transferable
utility result and why it is true, as that will provide us with guidance to
the general case. In the TU case, only the total payoff f(a, b) is relevant.
The assumption that is often made about f is that it satisfies increasing
differences (ID): whenever a > b and c > d, f(c, a)−f(d, a) ≥ f(c, b)−f(d, b).
Why does this imply positive assortative matching (segregation in the one-
sided case), irrespective of the distribution of types? Usually, the argument
is made by noticing that the total output among the four types is maximized
(a necessary condition of equilibrium in the TU case, but not, we should
emphasize, in the case of NTU) when a matches with c and b with d: this is
evident from rearranging the ID condition.
However, it is more instructive to analyze this from the equilibrium point

of view. Suppose that a and b compete for the right to match with c rather
than d. The increasing difference condition says that a can outbid b in this
competition, since the incremental output produced if a switches to c exceeds
that when b switches. In particular, this is true whatever the level of utility
v that d might be receiving: rewrite ID as f(c, a)− [f(d, a)− v] ≥ f(c, b)−
[f(d, b) − v]; this is literally the statement that a’s willingness to pay for
c, given that d is getting v, exceeds b’s. Thus a situation in which a is
matched with d and b with c is never stable: a will be happy to offer more
to c than the latter is getting with b.8 The ID result is distribution free: the
type distribution will affect the equilibrium payoffs, but the argument just
given shows that a’s partner must be larger than b’s regardless of what those
payoffs might be.
The convenient feature of TU is that if a outbids b at one level of v, he

does so for all v. Such is not the case with NTU. Our sufficient condition will
require explicitly that a can outbid b for all levels of v. If this requirement
seems strong, recall that the nature of the result sought, namely monotone
matching regardless of the distribution, is also strong. By the same token, it
is weaker than ID, and includes TU as a special case.
In an NTU model, the division of the surplus between the partners cannot

be separated from the level that they generate. Switching to a higher type

8This assumes that b prefers to be with c than with d in the first place — else b can
upset the match himself — so if b is getting v0 with c, f(c, b) − v0 < f(c, b) − [f(d, b) − v]
follows from v0 > f(d, b)− v
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partner may not be attractive if it is also more costly to transfer utility
to a high type, that is, if the frontier is steeper. A sufficient condition for
PAM is that not only is there the usual complementarity in the production
of surplus, but also there is a complementarity in the transfer of surplus —
frontiers are flatter, as well as higher, for higher types. This will perhaps be
more apparent from the local form of our conditions.

4.2 Generalized Difference Conditions

Let a > b and c > d and suppose that d were to get v. Then the above
reasoning would suggest that a would be able to outbid b for c if

φ(c, a,φ(a, d, v)) ≥ φ(c, b,φ(b, d, v)). (5)

The left-hand side is a’s willingness to “pay” (in utility terms) for c rather
than d, given that d receives v (a then receives x = φ(a, d, v), so c would get
φ(c, a, x) if matched with a). The right-hand side is the counterpart expres-
sion for b. Thus the condition says in effect that a can outbid b in an attempt
to match with c instead of d.
If this is true for any value of v then we expect that an equilibrium will

never have a matched with d while b is matched with c. But this is all that
is meant by PAM: a’s partner can never be smaller than b’s. In the case of
one sided models, taking c = a and d = b gives us segregation: everyone’s
partner is identical to himself.
Before proceeding, we shall need to establish that equilibria in this en-

vironment satisfy an equal treatment property: all agents of the same type
receive the same equilibrium payoff. The reason that an argument needs to
be made is that this is not a general property of the core in NTU models.9

But continuity and strictly decreasing frontiers ensure it is satisfied.

Lemma 1 (Equal Treatment) All agents of the same type receive the same
equilibrium payoff.

Proof. Suppose that there are two agents i and j of type a getting dif-
ferent utilities vi > vj, and that i’s partner k is of type b. Then k gets
φ(b, a, vi) < φ(b, a, vj), where the inequality follows from the fact that φ
is strictly decreasing in v. By continuity, there exists ² > 0 such that

9Suppose there are two types, a and b,with the measure of the b’s exceeding that of
the a’s. If an a and a b match, each gets a payoff of exactly 1, while unmatched agents or
agents who match with their own type get 0. There is no means to transfer utilty. Then
any allocation in which every a is matched to a b, with the remaining b’s unmatched, is
in the core. But some b’s get 1 while others get 0, violating equal treatment.
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v u(d)

u(b)

u(c)

u(a)

Figure 2: Generalized Increasing Differences

φ(b, a, vj + ²) > φ(b, a, vi); {k, j} can therefore block the equilibrium, a con-
tradiction.
This result allows us to refer to a type’s payoff without ambiguity.
When satisfied by any v, a > b, and c > d, condition (5) is called Gener-

alized Increasing Differences (GID).10 The concept is illustrated in Figure 1.
The frontiers for the matched pairs hb, di,hb, ci, ha, ci, and ha, di are plotted
in a four-axis diagram. The compositions in (5) are indicated by following
the arrows around from a level of utility v for d. Note that the utility c ends
up with on the “a side” exceeds that on the b side of the diagram.
Our main result states that GID is sufficient for segregation (PAM in the

two-sided case). There is an analogous condition, Generalized Decreasing
Differences (GDD), for NAM.

Proposition 1 (1) A sufficient condition for segregation in one-sided models
and PAM in two-sided models is generalized increasing differences (GID) on

10The designation Generalized Increasing Differences is motivated as follows. Let A be
the type space and G be a (partially) ordered group with operation ∗ and order %. We
are interested in maps ψ : A2 → G.
Consider the condition

a > b and c > d implies ψ(c, a) ∗ ψ(d, a)−1 % ψ(c, b) ∗ ψ(d, b)−1,
where ψ(·, ·)−1 denotes the inverse element under the group operation. When G = R, %
= the usual real order, and ∗ = real addition, this is just ID. GID corresponds to the
case in which G = monotone functions from R to itself, % = the pointwise order, and ∗ =
functional composition.
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[0,φ(d, a, 0)]: whenever a > b, c > d, and v ∈ [0,φ(d, a, 0)], φ(c, a,φ(a, d, v)) ≥
φ(c, b,φ(b, d, v)).
(2) A sufficient condition for NAM is generalized decreasing differences

(GDD) on [0,φ(d, b, 0)]: whenever a > b, c > d, and v ∈ [0,φ(d, b, 0)],
φ(c, a,φ(a, d, v)) ≤ φ(c, b,φ(b, d, v).

Proof. Here we consider only the one-sided cases; the two-sided cases are
similar. For segregation, suppose that instead we have an equilibrium (M, u∗)
that is not payoff equivalent to segregation: there is a positive measure of
heterogeneous matches of the form ha, bi. Then stability implies a doesn’t
want to switch to another a, and b doesn’t want to switch to b :

u∗a = φ(a, b, u∗b) ≥ φ(a, a, u∗a) = φ (a, a,φ (a, b, u∗b)) ,

(here we use equal treatment) and

u∗b ≥ φ(b, b, u∗b).

By payoff nonequivalence, at least one of these inequalities is strict (say it’s
the first), else matching a with a and b with b with is also an equilibrium.
Composing φ(a, b, ·) with the second inequality yields

u∗a ≤ φ(a, b,φ(b, b, u∗b)).

It then follows that

φ (a, a,φ (a, b, u∗b)) < φ(a, b,φ(b, b, u∗b))

which contradicts the GID condition (taking c = a and d = b there), and we
conclude that the economy is segregated.
For one-sided NAM, it suffices to rule out as possible equilibrium matches

(ha, bi, hc, di) and (ha, ci, hb, di) whenever a > b ≥ c > d, and matches of the
form (ha, ai, hb, bi) for arbitrary a 6= b. Suppose to the contrary that ha, bi
and hc, di is part of a stable match that is not payoff equivalent to NAM.
Then

φ(a, b, u∗b) ≥ φ(a, d, u∗d)

(a weakly prefers b to d) and

u∗b ≥ φ(b, c, u∗c) = φ(b, c,φ(c, d, u∗d)) (6)

(b weakly prefers a to c). At least one of these is strict; assume it’s the first.
Apply φ(b, a, ·) to the strict form of the first inequality to get

u∗b < φ(b, a,φ(a, d, u∗d)). (7)
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Combining (6) and (7) yields

φ(b, a,φ(a, d, u∗d)) > φ(b, c,φ(c, d, u∗d)),

contradicting GDD.
If instead ha, ci and hb, di are stable, we have

φ(a, c, u∗c) > φ(a, d, u∗d) =⇒ u∗c < φ(c, a,φ(a, d, u∗d))

and

u∗c ≥ φ(c, b,φ(b, d, u∗d)),

which again contradicts GDD.
Finally, if ha, ai and hb, bi are stable, and without loss of generality a > b,

then the equilibrium payoffs satisfy u∗a = φ(a, a, u∗a) and u
∗
b = φ(b, b, u∗b) by

equal treatment, and u∗a > φ(a, b, u∗b), by stability and payoff nonequivalence.
Apply φ(a, a, ·) to this inequality to get

φ(a, a, u∗a) < φ(a, a,φ(a, b, u∗b)).

GDD implies

φ(a, a,φ(a, b, u∗b)) ≤ φ(a, b,φ (b, b, u∗b)) .

Thus

u∗a > φ(a, b, u∗b) = φ(a, b,φ(b, b, u∗b)) ≥ φ(a, a,φ(a, b, u∗b)) > u
∗
a,

a contradiction.
We now apply this result our model of risk sharing within households.

Example 5 We claim that the GDD is satisfied in the risk sharing example.
Recall from (2) that φ(a, b, v) = ln(1 − ev−Σab) + Σab, where Σab denotes
Σiπi ln(wi + a+ b+ 2). Now let a > b and c > d. Then

φ(c, a,φ(a, d, v) = ln(1− eln(1−ev−Σad )+Σad−Σac) + Σac

= ln(1− eΣad−Σac + ev−Σac) + Σac

and

φ(c, b,φ(b, d, v) = ln(1− eΣbd−Σbc + ev−Σbc) + Σbc.
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Now,

φ(c, a,φ(a, d, v)) < φ(c, b,φ(b, d, v))

if and only if

(1− eΣad−Σac + ev−Σac)eΣac < (1− eΣbd−Σbc + ev−Σbc)eΣbc,

that is if eΣac−eΣad < eΣbc−eΣbd. This is just the requirement that the function
eΣab satisfies decreasing differences, which it clearly does, since ∂2

∂a∂b
eΣab =

−eΣabV ar( 1
w+a+b+2

) < 0.
Thus GDD is indeed satisfied, and we conclude that in the risk-sharing econ-
omy with logarithmic utility, agents will always match negatively in wealth.
This is intuitive: a risk-neutral agent is willing to offer a better deal for in-
surance than is a risk averse one, so those demanding the most insurance
(the most risk averse, i.e., the poor) will share risk with the least risk averse
(the rich), while the moderately risk averse share with each other.

5 Computational Aids

A number of useful computational techniques follow from the sufficiency of
the GID and GDD. We first present a set of differential conditions. In ad-
dition to being easy to apply, they help sharpen the intuition about the
trade-offs at work in NTU matching problems.
Next we note that GID and GDD are preserved under ordinal transfor-

mations of types’ preferences. This implies that the analyst is free to choose
whichever representation of preferences is most convenient, and leads to a
weakening of the differential conditions. In case the NTU model admits a
TU representation, GID and GDD reduce to ID and DD of the joint payoff
function.
Finally, we develop the lattice-theoretic versions of our conditions and

conclude he section with a remark on models with type-dependent autarchy
payoffs.

5.1 Differential Conditions

Often it is easier to check whether a condition holds locally than globally,
particularly if a closed-form expression for the frontier is not available. We
now provide a set of local conditions which suffice for monotone matching.
In addition to being computationally convenient, these conditions illuminate
the “complementarity in transferability” property alluded to above. In this
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subsection we suppose that φ(x, y, v) is twice differentiable (except of course
at v = φ(y, x, 0)).

Proposition 2 (i) A sufficient condition for segregation (or PAM) is that
for all x, y ∈ A×A and v ∈ [0,φ(y, x, 0)),

φ12(x, y, v) ≥ 0,φ13(x, y, v) ≥ 0 and φ1(x, y, v) ≥ 0. (8)

(ii) A sufficient condition for NAM is that for all x, y ∈ A × A and v ∈
[0,φ(y, x, 0)),

φ12(x, y, v) ≤ 0,φ13(x, y, v) ≤ 0 and φ1(x, y, v) ≥ 0. (9)

Proof. We show that the local conditions imply the generalized difference
conditions. Fix v, a > b and c > d, and consider the case (i) for segrega-
tion/PAM (the other case is similar). Then φ12 ≥ 0 implies that for any
t ∈ [d, c]

φ1(t, a,φ(b, d, v)) ≥ φ1(t, b,φ(b, d, v));

φ1 ≥ 0 implies φ(a, d, v) ≥ φ(b, d, v), and φ13 ≥ 0 in turn yields
φ1(t, a,φ(a, d, v)) ≥ φ1(t, a,φ(b, d, v)),

so that

φ1(t, a,φ(a, d, v)) ≥ φ1(t, b,φ(b, d, v)).

Integrating both sides of this inequality over t from d to c then gives

φ(c, a,φ(a, d, v))− φ(d, a,φ(a, d, v)) ≥ φ(c, b,φ(b, d, v))− φ(d, b,φ(b, d, v));

Noting that φ(d, a,φ(a, d, v)) = φ(d, b,φ(b, d, v)) = v gives us GID.
Obviously, with TU, φ13 = 0, so this reduces to the standard condition

in that case. The extra term reflects the fact that changing the type results
in a change in the slope of the frontier. For segregation/PAM, the idea is
that higher types can transfer utility to their partners more easily (φ3 is less
negative, hence flatter).
The conditions in Proposition 2 illustrate the separate roles of both the

usual “productivity” complementarity and the “transferability” complemen-
tarity we have mentioned. In terms of the bidding story we mentioned in
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Section 4.1, if two different types are competing for a higher partner, both
will have to offer her more than they would a lower partner (φ1 > 0); if the
higher type’s frontier is flatter than the lower’s frontier (φ13 ≥ 0), it will cost
the higher type less to do this than it will the lower one; meanwhile if the
high type is also more productive on the margin (φ12 > 0) then he is sure to
win, in effect being both more productive and having lower costs.
To be sure, it is not necessary for the two effects to be operative in

the same direction: for segregation/PAM one only needs the net effect to
be positive. Indeed, the conditions in Proposition 2 imply that the potential
utility gains from an increase in one’s attribute are monotonic in the partner’s
attribute: if (8) holds,

d

da
φ1(t, a,φ(a, t, v)) = φ12(d, b,φ(b, d, v)) + φ13(d, b,φ(b, d, v)) · φ1(b, d, v) ≥ 0,

(10)

and if (9) does, then

φ12(d, b,φ(b, d, v)) + φ13(d, b,φ(b, d, v)) · φ1(b, d, v) ≤ 0; (11)

but the reverse implications are not true.11

Closely related conditions are sufficient for monotone matching, if perhaps
harder to verify than (8) and (9). Like (10) and (11), they involve composi-
tions of φ and its partial derivatives; we simply mention them without further
comment; the proof is similar to that of Proposition 2.

Proposition 3 If φ is smooth, a sufficient condition for segregation/PAM
is that for all types x, y, z with z ≤ x, and utilities v,

φ12(x, y,φ(y, z, v)) + φ13(x, y,φ(y, z, v)) · φ1(y, z, v) ≥ 0.
A sufficient condition for NAM is that for all types x, y, z with z ≤ x, and
utilities v,

φ12(x, y,φ(y, z, v)) + φ13(x, y,φ(y, z, v)) · φ1(y, z, v) ≤ 0.
11In fact, (10) and (11) are implied by the generalized difference conditions. To see

this, take a > b and c > d and note that GID is equivalent to φ(c, a,φ(a, d, v)) −
φ(d, a,φ(a, d, v)) ≥ φ(c, b,φ(b, d, v))−φ(d, b,φ(b, d, v)). Dividing by c−d and taking limits
as c→ d yields φ1(d, a,φ(a, d, v)) ≥ φ1(d, b,φ(b, d, v)). Dividing by a− b and letting a→ b
yields

φ12(d, b,φ(b, d, v)) + φ13(d, b,φ(b, d, v)) · φ1(b, d, v) ≥ 0,
as claimed. The GDD case is similar.
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The condition φ1 ≥ 0 in Propositions 2 and 3 is less restrictive than might
first appear: in a model in which instead 0 ≥ φ1 everywhere, one can redefine
the type space with the “reverse” order; then the cross partial φ12 retains its
sign, while φ13 and φ1 reverse sign and Proposition 2 can be applied (in other
words, if φ1 ≤ 0 everywhere, then monotone matching occurs when φ12 and
φ13 are opposite-signed).
Finally, we show in the next subsection that the differential conditions can

be weakened further by considering increasing transformations of preferences.

Example 6 Earlier we conjectured that the most risk averse agents ought to
match with the most well monitored tasks, since the latter are optimally con-
tracted as fixed wages. This intuition is incomplete, and indeed misleading,
as the following application of Proposition 2 indicates.
Recall from (3) and (4) that

φ(p, a, v) = π + a− ev+1[pe 1−p
2p−1 + (1− p)e− p

2p−1 ]

and

φ(a, p, v) =
1− p
2p− 1 + ln

Ã
π + a− v

pe
1

2p−1 + 1− p

!
.

Thus, when own type is a principal,

φ1(p, a, v) = φ13(p, a, v) =

µ
e
1−p
2p−1 (

p

(2p− 1)2 − 1)− e
− p
2p−1 (

1− p
(2p− 1)2 − 1)

¶
ev+1 > 0,

and when own type is an agent, φ1(a, p, v) =
1

π+a−v > 0 and φ13(a, p, v)

=
¡

1
π+a−v

¢2
> 0. Moreover, φ12 = 0 in either case.

Thus the agents with lower risk aversion (higher wealth) are matched to
principals with higher quality signals, i.e. more observable tasks. This result
may appear surprising, since empirically we tend to associate less observable
tasks to wealthier workers (in particular one would expect the poor to take
fixed wages while the rich bear risk).
The explanation for the result is that in the standard version of the

principal-agent model with utility additively separable in income and effort,
incentive compatibility for a given effort level entails that the amount of risk
borne by the agent increases with wealth (in this case, the variance of the

agent’s income is p(1 − p)e 2
2p−1

µ
π+a−v

pe
1

2p−1+1−p

¶2
). This effect arises from the

diminishing marginal utility of income. Though wealthier agents tolerate risk
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better than the poor, they must accept more risk on a given task; with loga-
rithmic utility (and indeed for many other utilities — see Newman, 1999), the
latter effect dominates, and the wealthy therefore prefer the safer tasks. Put
another way, better monitoring allows for a reduction in risk borne by the
agent; given the increasing risk effect of incentive compatibility, the benefit of
the risk reduction is greater for the rich than for the poor, and this generates
a complementarity between monitoring and wealth.
The result offers a possible explanation for the finding in Ackerberg-Botticini

(2002) that in medieval Tuscany, wealthy peasants were more likely than poor
peasants to tend safe crops (cereals) rather than risky ones (vines).

This example is instructive because the entire effect comes from the non-
transferability of the problem. There is no direct “productive” interaction
between principal type and agent type (φ12 = 0); only the complementarity
between type and transferability plays a role in determining the match.
Finally, as is apparent from their derivation, the local conditions are

stronger than generalized difference conditions, even restricting to smooth
frontier functions. This is of practical as well as logical interest: as we
saw, Example 3 satisfies GDD, from which we concluded there is nega-
tive matching in wealth. But in spite being smooth, φ(a, b, v) = ln(1 −
ev−Σiπi ln(wi+a+b)) + Σiπi ln(wi + a+ b) ≡ ln(1− ev−Σab) + Σab doesn’t satisfy
the local condition:

φ1 =
1

1− ev−Σab
∂Σab
∂a

> 0,

φ12 =
1

(1− ev−Σab)2
Ã
(1− ev−Σab)∂

2Σab
∂a∂b

− ev−Σab
µ
∂Σab
∂a

¶2!
< 0,

yet

φ13 =
ev−Σab

(1− ev−Σab)2
∂Σab
∂a

> 0.

Thus, for some models, the generalized difference conditions may apply
while the local conditions do not.12 However, in such cases, it may be possible
to find an alternate representation of agents’ preferences in which the frontiers
do satisfy the local conditions.

12Of course, (11) is satisfied for this example, as it must be since it is a consequence of
GDD:
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5.2 Order Preserving Transformations

The core of an economy is independent of the cardinal representation of
preferences; in particular the matching pattern must not depend on how
one represents the preferences of the agents. However, so far we have only
established sufficiency of the generalized difference conditions for monotone
matching, and so it is legitimate to ask whether they hold after monotone
transformations of types’ utilities.
Suppose that

φ(a, b, v) = max
x,x0

U(x, a) s.t. U(x0, b) ≥ v,

where x and x0 are choice variables taken to be in some feasible set. Let h be
an increasing transformation applied to one type’s utility, say t: we replace
U(x, t) by h(U(x, t)), φ(t, b, v) by h(φ(t, b, v)) and φ(b, t, v) by φ(b, t, h−1(v)).
We have the following result:

Proposition 4 Suppose GID (GDD) holds for φ. Then GID (GDD) holds
for any other frontier function generated from φ by monotone transformations
of types’ utilities.

Proof. We consider the case for GID; the proof for GDD is virtually
identical. Note that it is enough to show that if GID holds for φ, then it
holds for the frontier function derived by transforming a single type’s utility;
the proposition is verified by repeating the argument for all types.
To show that GID also holds for the new frontier function, suppose first

that t = c in the expression

a > b, c > d, v ∈ [0,φ(d, b, 0)] =⇒ φ(c, a,φ(a, d, v)) ≥ φ(c, b,φ(b, d, v)).

φ12(a, b,φ(b, a, v)) + φ13(a, b,φ(b, a, v)) · φ1(b, a, v)

=
1

(1− eln(1−ev−Σab )+Σab−Σab)2

Ã
(1− eln(1−ev−Σab )+Σab−Σab)∂

2Σab
∂a∂b

− eln(1−ev−Σab )+Σab−Σab
µ
∂Σab
∂a

¶2!

+
eln(1−e

v−Σab )+Σab−Σab

(1− eln(1−ev−Σab )+Σab−Σab)2
∂Σab
∂a

· 1

1− ev−Σab
∂Σab
∂a

=

µ
1

ev−Σab

¶2Ã
ev−Σab

∂2Σab
∂a∂b

− (1− ev−Σab)
µ
∂Σab
∂a

¶2!
+

µ
1

ev−Σab

¶2µ
∂Σab
∂a

¶2
=

1

ev−Σab

Ã
∂2Σab
∂a∂b

+

µ
∂Σab
∂a

¶2!
= −eΣab−vV ar( 1

w + a+ b+ 2
) < 0.
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Then we simply need to apply h to both sides of the implied inequality, which
obviously preserves its truth value. If t = a, then only the left hand side is
affected: we get φ(c, a, h−1(h(φ(a, d, v)))) = φ(c, a,φ(a, d, v)), so again the
GID holds under the new representation of preferences. And if t = d, then
we need

z ∈ [h(0), h(φ(d, b, 0)] =⇒ φ(c, a,φ(a, d, h−1(z))) ≥ φ(c, b,φ(b, d, h−1(z))),

which follows from the fact that h−1(z) always lies in [0,φ(d, b, 0)].
We shall call a frontier function φ̂ generated from φ by subjecting all

types’ utilities to increasing transformations a representation of φ. A suitably
chosen representation of φ may be easier to work with than φ itself:

Example 7 In the risk sharing example the frontier was computed to be
φ(a, b, v) = ln(1 − ev−Σab) + Σab, where Σab ≡

P
πi ln(a + b + wi + 2). If

we transform the utility by exponentiation (doing so for all types), we get
φ̂(a, b, v) = eφ(a,b,ln v) = eln(1−e

ln v−Σab)+Σab = eΣab − v. This function appears
to be more manageable than φ; indeed φ̂ is a transferable utility represen-
tation of φ (more on this in the next subsection). GDD for φ̂ is satisfied:
φ̂(c, a, φ̂(a, d, v)) < φ̂(c, b, φ̂(b, d, v)) ⇐⇒ eΣca − (eΣad − v) < eΣcb − (eΣbd −
v)⇐⇒ eΣab satisfies DD, which we verified earlier.

Though the generalized difference conditions are preserved for all repre-
sentations of φ, not so the differential conditions in Proposition 2. Recall
that in the risk sharing example, those conditions do not hold for φ. But
they do for the above transformed version of φ̂ : indeed, φ̂1 > 0, φ̂12 < 0, and
φ̂13 = 0. This suggests the following strengthening of Proposition 2, whose
proof is an immediate consequence of the fact that the differential conditions
imply GID, which in turn implies GID of any representation of φ.

Corollary 1 (1) A sufficient condition for segregation (or PAM) is that
there exists a representation φ̂ of φ such that for all x, y ∈ A × A and
v ∈ [0,φ(y, x, 0)),

φ̂12(x, y, v) ≥ 0, φ̂13(x, y, v) ≥ 0 and φ̂1(x, y, v) ≥ 0.

(2) A sufficient condition for NAM is that there exists a representation φ̂ of
φ such that for all x, y ∈ A×A and v ∈ [0,φ(y, x, 0)),

φ̂12(x, y, v) ≤ 0, φ̂13(x, y, v) ≤ 0 and φ̂1(x, y, v) ≥ 0.
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5.3 TU Representability

We noted that by transforming the payoffs of the agents in the risk shar-
ing example, we could express the frontiers in a transferable utility form.
This cannot be done with all NTU models, of course (see Legros-Newman,
2003 for more on this topic), but there are some well-known-examples. For
instance, the Principal-Agent model with exponential utility (Holmstrom-
Milgrom, 1987) can be given a TU representation by looking at players’ cer-
tainty equivalent incomes rather than their expected utility levels. Another
instance is the principal-agent example in this paper.
Start with a model φ(a, b, v) and say that it is TU-representable if there is

a set of increasing transformations F (t, ·), indexed by type t, and a function
of types ψ(t, t0) such that

∀a, b, v, F (a,φ(a, b, v)) = ψ(a, b)− F (b, v).
Then F (a,φ(a, b, v)) is a TU model, since the transformed payoffs to

(a, b) sum to ψ(a, b), independently of the distribution of transformed utility
between a and b. It follows from the definition that ψ is symmetric.13 The
main observation of this subsection is the following

Proposition 5 Suppose that φ has a TU representation (F,ψ). Then φ
satisfies GID (GDD) if and only if ψ satisfies ID (DD).

Proof. Take a > b, c > d, and v and assume GID holds. Then

φ(c, a,φ(a, d, v)) ≥ φ(c, b,φ(b, d, v))

⇐⇒ F (c,φ(c, a,φ(a, d, v))) ≥ F (c,φ(c, b,φ(b, d, v)))
⇐⇒ ψ(c, a)− F (a,φ(a, d, v)) ≥ ψ(c, b)− F (b,φ(b, d, v))
⇐⇒ ψ(c, a)− ψ(a, d) + F (d, v) ≥ ψ(c, b)− ψ(b, d) + F (d, v)

⇐⇒ ψ(c, a)− ψ(d, a) ≥ ψ(c, b)− ψ(d, a),

i.e. ψ satisfies increasing differences. The proof for GDD simply reverses all
the weak inequalities.

Example 8 For the principal agent example, put F (p, v) = 1

pe
1−p
2p−1+(1−p)e

−p
2p−1

v,

and F (a, v) = ev+1. The sum F (p,φ(p, a, v)) + F (a, v) is then ψ(p, a) =
π+a

pe
1−p
2p−1+(1−p)e

−p
2p−1

, which satisfies ID: matching is always positive assortative.

13To see this, note that F (b,φ(b, a, v)) = ψ(b, a) − F (a, v), but F (a, v) =
F (a,φ(a, b,φ(b, a, v))) = ψ(a, b)−F (b,φ(b, a, v)), so that F (b,φ(b, a, v)) = ψ(a, b)−F (a, v);
hence ψ(a, b) = ψ(b, a).
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5.4 Lattice Theoretic Conditions

Proposition 2 can be weakened by considering (possibly) nondifferentiable
functions that are supermodular in pairs of variables.

Proposition 6 (1) A sufficient condition for segregation (PAM in two sided
models) is that φ is supermodular in types, increasing in own type, and su-
permodular in own type and payoff.
(2) A sufficient condition for NAM is that φ is submodular in types, increas-
ing in own type and submodular in own type and payoff.

Proof. Consider case (1); the other case is similar. Take v, a > b and c > d.
Supermodularity in own type and partner’s utility, along with increasing in
own type implies φ(c, a,φ(a, d, v)) + φ(d, a,φ(b, d, v)) ≥ φ(c, a,φ(b, d, v)) +
φ(d, a,φ(a, d, v)), or φ(c, a,φ(a, d, v))−φ(d, a,φ(a, d, v)) ≥ φ(c, a,φ(b, d, v))−
φ(d, a,φ(b, d, v)). But the right hand side of the latter inequality weakly ex-
ceeds φ(c, b,φ(b, d, v))− φ(d, b,φ(b, d, v)) by supermodularity in types. Thus
φ(c, a,φ(a, d, v))−φ(d, a,φ(a, d, v)) ≥ φ(c, b,φ(b, d, v))−φ(d, b,φ(b, d, v)), and
since φ(d, a,φ(a, d, v)) = φ(d, b,φ(b, d, v)) = v, φ(c, a,φ(a, d, v)) ≥ φ(c, b,φ(b, d, v)),
which is GID.
It is evident from this proposition that a stronger sufficient condition

for segregation (or PAM) is that φ itself is a supermodular function that is
increasing in own type, since this implies the condition in Proposition 6.14

The principal interest of this observation is that it enables us to offer
sufficient conditions for monotone matching expressed in terms of the fun-
damentals of the model, rather than in terms of the frontiers (such results
leading to our local conditions would be much harder to come by).
The frontier can be expressed fairly generally as

φ(a, b, v) = max
x,x0

U(x, a)

s.t. U(x0, b) ≥ v
(x, x0) ∈ Φ(a, b).

Here Φ(a, b) ⊂ X, a (sub)lattice of some Rn, is the set of choices available
to types (a, b). A sufficient condition for φ to be increasing in own type

14More directly, given v, a > b and c > d, put x = (d, a,φ(a, d, v)) and y =
(c, b,φ(b, d, v)) in the defining inequality φ(x ∨ y) + φ(x ∧ y) ≥ φ(x) + φ(y). Then since
φ(a, d, v) ≥ φ(b, d, v), x ∨ y = (c, a,φ(a, d, v)), x ∧ y = (d, b,φ(b, d, v)),and we have

φ(c, a,φ(a, d, v)) + φ(d, b,φ(b, d, v)) ≥ φ(d, a,φ(a, d, v)) + φ(c, b,φ(b, d, v)),

which is just GID since φ(d, b,φ(b, d, v)) = φ(d, a,φ(a, d, v) = v.
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is that U is increasing in type and Φ is continuous and increasing (in the
set inclusion order) in own type. A sufficient condition for φ to be strictly
decreasing in v is that U is strictly monotone in x.
We also need the set

S = {(a, b, v, x, x0)|a ∈ A, b ∈ A, v ∈ R, (x, x0) ∈ Φ(a, b)}

to form a sublattice. Then an application of Theorem 2.7.2 of Topkis (1998)
yields

Corollary 2 If payoffs functions are supermodular (submodular), strictly in-
creasing in choices, and increasing in type; choice sets are continuous and
increasing in own type; and the set of types, payoffs and feasible choices
forms a sublattice, then the economy is segregated in the one-sided case and
positively matched in the two-sided case (negatively matched).

Topkis’s theorem tells us that under the stated hypotheses, φ will be
supermodular (submodular); since it is also increasing in own type by the
hypotheses on F and U , the result follows.
As a practical matter, the usefulness of this corollary hinges on the ease

of verifying that the sets S and F have the required properties. In many
cases it may be more straightforward to compute the frontiers and apply
Propositions 1, 2, or 6. Note, for example, that since the frontier function in
the risk-sharing example is not submodular despite the fact that the objective
function is, the choice-parameter set S is not a sublattice.15

5.5 Type-Dependent Autarchy Payoffs

Suppose that autarchy generates a payoff u(a) to type a; if A is compact
and u(·) continuous, without loss of generality, we can assume u(a) ≥ 0.

15One might also wonder about the relationship between GID and quasi-supermodularity
(QSM) (Milgrom-Shannon, 1994; Topkis, 1998). In terms of the notation in footnote 10,
the map ψ : A2 → G is quasi-supermodular if ψ(x) % ψ(x ∧ y) =⇒ ψ(x ∨ y) % ψ(y), with
the same implication holding for the strict order; putting x = (b, c) and y = (a, d) this can
be stated as a > b, c > d, and ψbc % ψbd implies ψac % ψad. Equivalently, we must have
ψcb ◦ ψbd % Id implies ψca ◦ ψad % Id, where Id is the identity map. GID of ψ clearly
implies QSM of ψ, but not vice versa: suppose that for some types a, b, c, d and payoff v
we have φ(c, a,φ(a, d, v)) < φ(c, b,φ(b, d, v)) < v; thus φ (and ψ) violates GID, but ψ does
not violate QSM. Moreover, QSM is not sufficient for PAM: if QSM is satisfied and GID is
not, as in this case, there is a type distribution for which the equilibrium is NAM rather
than PAM (the logic parallels that in Section 5.6). A similar set of relationships can be
demonstrated if we ask for QSM of φ rather than ψ.
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Then all the propositions go through as before, since if the generalized dif-
ference or differential conditions hold for nonnegative payoffs, they hold on
the restricted domain of individually rational ones. Equilibrium will now
typically entail that some types remain unmatched (even apart from excess
supply issues), but among those matched, the pattern will be monotone if
the appropriate difference condition holds.

5.6 Necessity

A natural issue to consider at this point is the strength of the sufficient
conditions we have given for monotone matching: is GID necessary for PAM?
Here we can give an affirmative answer for the two-sided case:

Proposition 7 In a two-sided model, if the equilibrium outcome is PAM
(NAM) for all distributions of types, then the frontier function φ satisfies
GID (GDD).

Proof. Consider PAM, as the case for the necessity of GDD for NAM is
similar. Suppose there exist a > b on one side and c > d on the other, and
a payoff level v such that φ(c, a,φ(a, d, v)) < φ(c, b,φ(b, d, v)). Then we can
find a distribution of types such that there is an equilibrium that is not payoff
equivalent to PAM. To see this, put an equal measure at each of the four
types a, b, c, d. Then there is ² > 0 such that ha, di with payoffs (φ(a, d, v), v)
and hb, ci with payoffs (φ(b, d, v) + ²,φ(c, b,φ(b, d, v) + ²)) is an equilibrium.
To verify stability, note that by continuity of φ in v, for ² small enough,
φ(c, a,φ(a, d, v)) < φ(c, b,φ(b, d, v) + ²). Thus c would be strictly worse off
switching to a as long as a receives at least his equilibrium payoff; similarly
d would do strictly worse to switch to b.
The one-sided case is a bit more involved. It is known that in the one-sided

TU model that ID is not necessary for segregation, and that this condition
can be weakened to nonpositivity of a function derived from the joint payoff
called the surplus. One-sided PAM (outside of the definition of which we
have not considered here) and NAM are equivalent to something called weak
increasing differences and weak decreasing differences of this derived function
(Legros-Newman, 2002a).
When utility is nontransferable, a similar construction can be performed

in which a surplus function is derived from the frontier φ; suitably weak-
ened versions of the generalized difference conditions defined for the surplus
function are then necessary as well as sufficient for monotone matching. The
interested reader is referred to Legros-Newman (2002c).
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6 Conclusion

6.1 Summary

Many economic situations involving nontransferable utility are naturally mod-
eled as matching or assignment games. For these to have much use, it is
necessary to characterize equilibrium matching patterns. We have presented
some general sufficient conditions for monotone matching in these models.
These have an intuitive basis and appear to be reasonably straightforward
to apply. Specifically, if one wants to ensure PAM, it does not suffice only to
have complementarity in types of productivity; one must ensure as well that
there is enough complementarity of type and transferability.
To summarize, if one wants to check that equilibrium matching pattern

of an NTU model with continuous, decreasing Pareto frontiers is monotone:

• Check that the model satisfies GID for segregation/PAM, and GDD
for NAM.

• If this proves unworkable, try the differential conditions (or their lattice
theoretic counterparts).

• Take advantage of the ordinal nature of GID; perhaps a monotone
transformation of types’ payoffs is tractable enough that GID or the
differential conditions can be verified

• In particular, the model may have a TU representation, in which case
one need only check for ID or DD of the joint payoff.

6.2 Discussion

This paper has focused on the study of properties of the economic environ-
ment that lead to monotone matching. Implicitly motivating this analysis is
the question of how changes in the environment influence changes in match-
ing. Space, not to mention the present state of knowledge, is too limited
to offer a complete answer to this question here, but the comparison of TU
with NTU is no doubt an important first step. Here we simply point out that
economy-wide changes to transferability may help to explain phenomena that
could be characterized as mass re-assignments of partners.
For instance, mergers and divestitures involve reassignments of say, up-

stream and downstream divisions of firms. Transferability between divisions
depends on the efficiency of credit markets, and that in turn depends on
interest rates— higher ones lead to an increase in agency costs, i.e. reductions
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in transferability, with the magnitude of the effect dependent on characteris-
tics of individual firms such as liquidity position or productivity. A shock to
the interest rate then may lead to widespread reassignment of partnerships
between upstream and downstream divisions, i.e., a “wave” of corporate re-
organization (Legros-Newman, 1999).
Or consider the effects of a policy like Title IX, which requires US schools

and universities receiving federal funding to spend equally on men’s and
women’s activities (athletic programs having garnered the most public at-
tention), or suffer penalties in the form of lost funding. If one models a
college as partnership between a male and female student-athlete, identi-
fying their types with the revenue-generating capacities of their respective
sports, the policy acts to transform a TU model into an NTU one, rather like
Example 1. Imposing Title IX would lead to a reshuffling of the types males
and females who match; the male wrestler (low revenue), formerly matched
to the female point guard (high revenue), will now match with, say, a female
rower, while the point guard now plays at a football school. There is evidence
that this sort of re-assignment has taken place: the oft-noted terminations
and contractions of some sports at some colleges are ameliorated by start-ups
and expansions at others.
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