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1 Introduction

Economists are accustomed to letting the “market” solve resource-allocation

problems. The primary theoretical justi…cation for this laissez-faire posi-

tion is the “…rst fundamental theorem of welfare economics” (see Debreu

(1957)), which establishes that, provided all goods are priced, a competitive

equilibrium is Pareto e¢cient. Implicit in the “all-goods-priced” hypothe-

sis, however, is the assumption that there are no signi…cant externalities; an

externality, after all, can be thought of as an unpriced commodity.

Once externalities are admitted, the …rst welfare theorem no longer ap-

plies. Thus, a school of thought dating back to Pigou (1932), if not earlier,

calls for government-imposed “mechanisms” (e.g., taxes on pollution) as a

way of redressing the market failure.

In opposition to the Pigouvian school, however, proponents of the Coase

Theorem (Coase, 1960) argue that, even in the presence of externalities,

economic agents should still be able to ensure a Pareto-e¢cient outcome

without government intervention provided that there are no constraints on

their ability to bargain and contract. The argument is straightforward: if a

prospective allocation is ine¢cient, agents will have the incentive to bargain

their way to a Pareto improvement. Thus, even if markets themselves fail,

Coasians hold that there is still a case for laissez-faire.

The Coasian position depends, however, on the requirement that any

externality present be excludable in the sense that the agent giving rise to it
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has control over who is and who is not a¤ected by it. A pure public good,

which, once created, will be enjoyed by everybody, constitutes the classic

example of a nonexcludable externality.

To see what goes wrong with nonexcludable externalities, consider pollu-

tion. For many sorts of pollution, particularly that of the atmosphere or sea,

it is fairly accurate to say that a polluter cannot choose to pollute one group

of agents rather then another, that is, pollution can be thought of as a pure

public bad and hence pollution reduction as a public good.

Now imagine that there is a set of communities that all emit pollution and

are adversely a¤ected by these emissions. Suppose, however, that reducing

pollution emission is costly to a community (say, because it entails curtailing

or modifying the community’s normal activities). It is clear that if communi-

ties act entirely on their own, there will be too little pollution reduction, since

a community shares the bene…t of its reduction with the other communities

but must bear the full cost alone. A Coasian might hope, however, that if

communities came together to negotiate a pollution-reduction agreement –

in which each community agrees to undertake some reduction in exchange

for other communities’ promises to do the same – a Pareto-e¢cient reduction

might be attainable. The problem is, however, that any given community

(let us call it “C”) will calculate that if all the other communities negotiate

an agreement, it is better o¤ not participating. By staying out, C can enjoy

the full bene…ts of the negotiated reduction (this is where the nonexcludibil-

ity assumption is crucial) without incurring any of the cost. Presumably, the
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agreed reduction will be somewhat smaller than had C participated (since

the bene…ts are being shared among only N¡ 1 rather then N participants).

However, this di¤erence is likely to be small relative to the considerable sav-

ing to C from not bearing any reduction costs (we formalize this argument

in section 2 below).1

Hence, it will pay community C to free-ride on the others’ agreement. But

since this is true for every community, there will end up being no pollution-

reduction agreement at all, i.e., the only reduction undertaken will be on an

individual basis. We conclude that, in the case of nonexcludable public goods,

even a diehard Coasian should agree that outside intervention is needed to

achieve optimality. The government - or some other coercive authority - must

be called on to impose a method for determining pollution reduction. We call

such a method a mechanism (or game form). Devising a suitable mechanism

may, however, be complicated by the fact that the authority might not know

critical parameters of the problem (e.g., the potential bene…ts that di¤erent

communities enjoy from pollution reduction).

Because environmental issues often entail nonexcludable externalities, the
1 Implicit in this argument is the assumption that the other communities cannot, in

e¤ect, coerce community C’s participation by threatening, say, to refrain from negotiating
any agreement at all if C fails to participate. What we have in mind in the idea that
any such threat would not be credible, i.e., it would not actually be carried out if push
came to shove. Also implicit is the presumption that community C will not be o¤ered
especially favorable terms in order to persuade it to join. But notice that if communities
anticipated getting especially attractive o¤ers by staying out of agreements, then they
would all have the incentive to drag their heels about negotiating such agreements and
so the same conclusion about the inadequacy of relying on negotiated settlements would
obtain. For further discussion of these points see Maskin (1994) and Baliga and Maskin
(2002).
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theory of mechanism design (sometimes called “implementation theory”) is

particularly pertinent to the economics of the environment. In this short

survey, we review some of the major concepts, ideas, and …ndings of the

mechanism-design literature and their relevance for the environment.

2 The Model

There are N players or agents, indexed by j 2 f1; 2; ::; Ng; and a set of

social choices (or social decisions) Y with generic element y: Agents have

preferences over the social choices, and these depend on their preference

parameters or types. Agent j of type µj 2 £j has a utility function Uj(y; µj)

(the interpretation of agent j as a …rm is one possibility, in which case Uj is

…rm j’s pro…t function). Let µ ´ (µ1; ::; µN) 2 £ ´ ¦Ni=1£i be the preference

pro…le or state. A choice y is (ex-post) Pareto-e¢cient for preference pro…le

µ if there exists no other decision y 0 such that, for all i = 1; :::; N;

Ui(y0; µi) ¸ Ui(y; µi)

with strict inequality for some i. A social choice function (or decision rule)

f is a rule that prescribes an appropriate social choice for each state, i.e., a

mapping f : £ ! Y . We say that f is e¢cient if f(µ) is Pareto e¢cient in

each state µ:

We illustrate this set-up with an example based on the discussion of

pollution in the Introduction. Suppose that N communities (labelled i =

1; :::; N) would like to reduce their aggregate emission of pollution. Suppose
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that the gross bene…t to community j of a pollution reduction r is µj
p
r where

µj 2 [a; b], and that the cost per unit of reduction is 1. If rj is the reduction

of pollution by community j, r =
PN
i=1 ri, and tj is a monetary transfer to

community j, then a social choice y takes the form y = (r1; :::; rN ; t1; :::; tN);

and

Uj(y; µj) = µj
p
r ¡ rj + tj:

We will assume that there is no net source of funds for the N agents, and

so for feasibility it must be the case that

NX

i=1

ti · 0:

The stronger requirement of balance entails that

NX

i=1

ti = 0:

To see why Coasian bargaining will not lead to Pareto-e¢cient pollu-

tion reduction, observe …rst that because preferences are quasi-linear, any

e¢cient social choice function that does not entail in…nite transfers (either

positive or negative) to some communities must implicitly place equal weight

on all communities. Hence, the Pareto-e¢cient reduction r¤(µ1; :::; µN) will

maximize

(
NX

i=1

µi)
p
r ¡ r;

and so

r¤(µi; :::; µn) =
(
P
µi)2

4
: (1)
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However, if there is no reduction agreement, community j will choose

rj = r¤¤j (µj) to maximize µj
q
rj +

P
i 6=j ri (µi) ¡ rj. Thus, if none of the µi’s

are equal, in equilibrium we must have

r¤¤j (µj) =
½
µ2j=4 , if µj is maximal infµ1; :::; µng
0 , otherwise

and so the total reduction is

r¤¤(µ1; :::; µn) =
NX

i=1

r¤¤i (µi) = max
j

µ2j
4
: (2)

Note the sharp contrast between (1) and (2). In particular, if all the µi’s

are in a small neighborhood of z, then (1) reduces approximately to
n2z2

4
,

whereas (2) becomes z
2

4
. In other words, the optimum reduction di¤ers from

the reduction that will actually occur by a factor
n2

4
.

Now, suppose that the communities attempt to negotiate the Pareto-

e¢cient reduction (1) by, say, agreeing to share the costs in proportion to

their bene…ts. That is, community j will pay a cost equal to
µj

PN
i=1 µi
4

, so

that its net payo¤ is

µj

s
(
P
µi)2

4
¡
µj

³PN
i=1 µi

´

4
=
µj

³PN
i=1 µi

´

4
: (3)

If instead, however, community j stands back and lets the others undertake

the negotiation and costs, it will enjoy a pollution reduction of

r¤ (µ¡j) =

³P
i 6=j µi

´2

4

and, hence, realize a net payo¤ of
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µj
³P

i6=j µi
´

2
: (4)

But provided that

X

i 6=j
µi > µj; (5)

(4) exceeds (3), and so community j does better to free-ride on the others’

agreement. Furthermore, as we have assumed that all the µi’s are distinct,

notice that (5) must hold for some j, and so a Pareto-e¢cient agreement is

not possible. Indeed, the same argument shows that any agreement involving

two or more communities is vulnerable to free-riding. Thus, despite the

possibility of negotiation, pollution reduction turns out to be no greater than

in the case where negotiation is ruled out.

We conclude that some sort of government intervention is called for. Prob-

ably the simplest intervention is for the government to impose a vector of

quotas (q1; :::; qN), where for each j , community j is required to reduce pol-

lution by at least the amount qj. If qj =
µj

³PN
i=1 µi

´

4
, then the resulting

outcome will be Pareto e¢cient.

Another familiar kind of intervention is for the government to set a vector

of subsidies (s1; :::;sN), where, for each j, community j is paid sj for each

unit by which it reduces pollution (actually this is not quite complete: to

…nance the subsidies - and thereby ensure feasibility - each community must

also be taxed some …xed amount). If sj = 1 ¡ µjPN
i=1 µi

, then the outcome
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induced by the subsidies will be Pareto e¢cient.

Notice that both these solutions rely on the assumption that the state is

veri…able to the government.2 But the more interesting - and typically harder

- case is the one in which the preference pro…le is not veri…able. In that

case, there are two particular information environments that have been most

intensely studied: …rst, the preference pro…le could, although unobservable

to the government, be observable to all the agents (complete information);

or, second, each agent j could observe only his own preference parameter µj

(incomplete information). In either case, the government typically “elicits”

the true state by having the agents play a game or mechanism.

Formally, a mechanism is a pair (M; g) where Mi is agent i’s message

space, M = ¦Ni=1Mi is the product of the individual message spaces with

generic element m; g : M ! Y is an outcome function, and g(m) 2 Y is the

outcome identi…ed by the function.

Returning to our pollution example, we note that if each community j

observes only its own type µj, the government might have the community

“announce” its type so that Mj = £j. As a function of the pro…le of their

announcements µ̂;3 the government chooses the reduction levels and transfers:

g(µ̂) = (r1(µ̂); :::; rN(µ̂); t1(µ̂); :::tN(µ̂)):
2They also depend on the assumption that each community’s reduction is veri…able.

If only a noisy signal of a reduction is veri…able, then there is said to be moral hazard.
However, we will assume throughout that the social choice is indeed veri…able so that the
issue of moral hazard does not arise.

3We write the pro…le of announced parameters as µ̂, to distinguish it from the actual
parameters µ.

8



To predict the outcome of the mechanism, we must invoke an equilibrium

concept. The appropriate equilibrium concept depends on the information

environment, so we study the complete and incomplete information settings

separately.

3 Complete Information

We begin with complete information. This is the case in which all agents

observe the preference pro…le (the state) µ but it is unveri…able to the

mechanism-imposing authority. It is most likely to be a good approximation

when the agents all know one another well, but the authority is a comparative

outsider.

Let S be a equilibrium concept such as Nash equilibrium, subgame per-

fect equilibrium, etc. Let OS(M; g; µ) be the set of equilibrium outcomes of

mechanism (M; g) in state µ:

A social choice function f is implemented by the mechanism (M; g) in the

solution concept S if OS(M; g; µ) = f (µ) for all µ 2 £: In that case, we say

f is implementable in S: Notice that, in every state, we require that all the

equilibrium outcomes be optimal (we will say more about this below).

3.1 Nash Implementation

Suppose …rst that S is Nash equilibrium. A message pro…le m is a Nash

equilibrium in state µ if

Ui(y(m); µi) ¸ Ui(y(m0i;m¡i); µi)
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for all i = 1; :::; N; and all m0
i 2Mi where m¡i is the pro…le of messages

(m1; :::;mi¡1;mi+1; :::;mN) that excludes mi:

We note that it is easy to ensure that at least one equilibrium outcome

coincides with what the social choice function prescribes if there are three or

more agents (N ¸ 3): let all agents announce a state simultaneously. If N¡1

or more agree and announce the same state µ̂; then let g(µ̂) = f(µ̂); de…ne

the outcome arbitrarily if fewer than N ¡ 1 agents agree. Notice that, if µ is

the true state, it is an equilibrium for every agent to announce µ̂ = µ; leading

to the outcome f (µ), since a unilateral deviation by any single agent will not

change the outcome. However, it is equally well an equilibrium for agents

to unanimously announce any other state (and there are many nonunani-

mous equilibria as well). Hence, uniqueness of the equilibrium outcome is a

valuable property of an implementing mechanism.

To ensure that it is possible to construct such a mechanism, we require

the social choice function satis…es monotonicity. A social choice function f is

monotonic if for any µ; Á 2 £ and y = f(µ) such that y 6= f(Á); there exists

an agent i and outcome y0 such that Ui(y; µi) ¸ Ui(y 0; µi) but Ui(y0; Ái) >

Ui(y; Ái): That is, a social choice function is monotonic if whenever there is

an outcome y that is optimal in one state µ but not in another Á, there exists

an agent i and an outcome y 0 such that agent i strictly prefers y0 to y in

state Á but weakly prefers y to y0 in state µ: This is a form of “preference

reversal.”

The other condition on social choice functions we impose to guarantee
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implementability is no veto power. A social choice function f satis…es no veto

power if whenever agent i; state µ and outcome y are such that Uj(y; µj) ¸
Uj(y 0; µj) for all agents j 6= i and all y0 2 y; then y = f(µ): That is, if in state

µ, N ¡ 1 or more agents agree that the best possible outcome is y; then y

is prescribed by f in state µ. Notice that in our pollution example, there is

no alternative that any agent thinks is best: an agent would always prefer a

bigger monetary transfer. Hence, no veto power is automatically satis…ed.

Theorem 1 (Maskin (1999)) If a social choice function is implementable in

Nash equilibrium, then it is monotonic. If N ¸ 3; a social choice function

that satis…es monotonicity and no veto power is Nash implementable.

Proof. Necessity: Suppose f is Nash implementable using the mechanism

(M; g): Suppose m is a Nash equilibrium of (M; g) in state µ, where f (µ) = y .

Then, g(m) = y: But, if f(µ) 6= f(Á); m cannot be a Nash equilibrium in

state Á: Therefore, there must exist an agent i with a message m0
i and an

outcome y0 = g(m0
i;m¡i) such that

Ui(y0; Ái) = Ui(g(m0
i;m¡i); Ái) > Ui(g(m); Ái) = Ui(y; Ái):

But because m is a Nash equilibrium in state µ; agent i must be willing to

send the message mi rather than m0
i in state µ: Hence,

Ui(y; µi) ¸ Ui(y0; µi);

implying that f is monotonic.
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Su¢ciency: See Maskin (1999).

It is not hard to verify that in out pollution example, the e¢cient social

choice function f (µ) = (r1(µ); :::; rN(µ); t1(µ); :::tN(µ)), where, for all j,

rj(µ) =
µj

PN
i=1 µi
4

(6)

and

tj(µ) = 0; (7)

is monotonic and hence Nash implementable. To see this, choose µ and µ0, and

let y = (r1; :::; rN ; t1; :::; tN) = f(µ). Then, from (6) and (7), rj =
µj

PN
i=1 µi
4

and tj = 0 for all j. For concreteness, suppose that, for some j, µj < µ0j.

Note that

Uj(y; µj) =
µj

PN
i=1 µi
2

¡ µj
PN
i=1 µi
4

: (8)

Choose y 0 = (r01; :::; r0N ; t01; :::; t0N) such that,

NX

i=1

r0i =

Ã
NX

i=1

µi

!2

(9)

r0j = rj =
µj

PN
i=1 µi
4

(10)

and

t0j =
¡µj

PN
i=1 µi

2
: (11)

From (6)-(11), we have

Uj(y0; µj) = Uj(y; µj):
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But because µ0j > µj and
PN
i=1 r0i >

PN
i=1 ri we have

Uj(y0; µ0j) > Uj(y; µ
0
j);

as monotonicity requires.

Here is an alternative but equivalent de…nition of monotonicity: A social

choice function is monotonic if, for any µ,Á; and y = f(µ) such that

Ui(y; µi) ¸ Ui(y0; µi) ) Ui(y; Ái) ¸ Ui(y0; Ái) for all i;

we have y = f(Á). This rendition of monotonicity says that when the out-

come that was optimal in state µ goes up in everyone’s preference ordering

when the state becomes Á, then it must remain socially optimal. Although

this may seem like a reasonable property, monotonicity can be quite a re-

strictive condition:

Theorem 2 (Muller and Satterthwaite (1977)). Suppose that £ consists of

all strict preference orderings on the social choice space Y: Then, any social

choice function that is monotonic and has a range including at least three

choices is dictatorial (i.e., there exists an agent i¤ such that in all states

agent i¤’s favorite outcome is chosen).4

3.2 Other Notions of Implementation

One way to relax monotonicity is to invoke re…nements of Nash equilibrium,

which make it easier to knock out unwanted equilibria while retaining optimal
4Monotonicity is a good deal less restrictive if one considers implementation of social

choice correspondences rather than functions (see Maskin (1999)).
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ones. Let us, in particular, explore the concept of subgame perfect equilibrium

and the use of sequential mechanisms, i.e., mechanisms in which agents send

messages one at a time. We maintain the assumption that the preference

pro…le is common knowledge among the agents but is unveri…able by an

outside party. Therefore, we consider mechanisms of perfect information and

(this is the subgame perfection requirement) strategies that constitute a Nash

equilibrium at any point in the game.

Rather than stating general theorems, we focus immediately on our pollu-

tion example. For simplicity, restrict attention to the case of two communities

(N = 2). We shall argue that any social choice function in this setting is

implementable in subgame perfect equilibrium using a sequential mechanism.

We note …rst that, for i = 1; 2 and any µi; µ0i 2 (a; b) there exist (ro1(µi; µ
0
i);

ro2(µi; µ
0
i); toi (µi; µ

0
i)) and (roo1 (µi; µ0i); roo2 (µi; µ0i); tooi (µi; µ

0
i)) such that

µi
q
ro1(µi; µ

0
i) + ro2(µi; µ

0
i)¡ roi (µi; µ0i) + toi (µi; µ0i) (12)

> µi
q
roo1 (µi; µ0i) + roo2 (µi; µ0i)¡ rooi (µi; µ0i) + tooi (µi; µ0i)

and

µ0i
q
roo1 (µi; µ0i) + roo2 (µi; µ0i) ¡ rooi (µi; µ0i) + tooi (µi; µ0i) (13)

> µ0i
q
ro1(µi; µ

0
i) + ro2(µi; µ

0
i) ¡ roi (µi; µ0i) + toi (µi; µ0i)

Formulas (12) and (13) constitute a preference reversal condition. The

condition says that for any two types µi and µ0i we can …nd choices (ro1; ro2; toi )

and (roo1 ; roo2 ; tooi ) such that the former is preferred to the latter under µi and

the latter is preferred to the former under µ0i.
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In view of preference reversal, we can use the following mechanism to

implement a given social choice function f:

Stage 1

Stage 1.1: Agent 1 announces a type µ̂1.

Stage 1.2: Agent 2 can agree, in which case we go to Stage 2, or disagree

by announcing some µ̂
0
1 6= µ̂1, in which case we go to Stage 1.3.

Stage 1.3: Agent 1 is …ned some large amount p¤and then chooses between

(ro1(µ̂1; µ̂
0
1); ro2(µ̂1; µ̂

0
1); to1(µ̂1; µ̂

0
i)) and (roo1 (µ̂1; µ̂

0
1); roo2 (µ̂1; µ̂

0
1); too1 (µ̂1; µ̂

0
1)). If he

chooses the former, agent 2 is also …ned p¤; if he chooses the latter, agent 2

receives p¤. The mechanism stops here.

Stage 2: This is the same as Stage 1.2 except the roles are reversed: agent

2 announces µ̂2, and agent 1 can either agree or disagree. If he agrees, we go

to Stage 3. If he disagrees, then agent 2 is …ned p¤and must choose between

(ro1(µ̂2; µ̂
0
2); ro2(µ̂2; µ̂

0
2); to2(µ̂2; µ̂

0
2)) and (roo1 (µ̂2; µ̂

0
2); roo2 (µ̂2; µ̂

0
2); too2 (µ̂2; µ̂

0
2)). If he

chooses the former, agent 1 is also …ned p¤; if he chooses the latter, agent 1

receives p¤.

Stage 3: If µ̂1 and µ̂2 have been announced, the outcome f(µ̂1; µ̂2) is

implemented.

We claim that, in state (µ1; µ2); there is a unique subgame perfect equi-

librium of this mechanism, in which agent 1 truthfully announces µ̂1 = µ1

and agent 2 truthfully announces µ̂2 = µ2, so that the equilibrium outcome

is f(µ̂1; µ̂2). To see this, note that in Stage 2, agent 1 has the incentive

to disagree with any untruthful announcement µ̂2 6= µ2 by setting µ̂
0
2 = µ2.
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This is because agent 1 forecasts that, by de…nition of (ro1(µ̂2; µ2); ro2(µ̂2; µ2);

to2(µ̂2; µ2)) and (roo1 (µ̂2; µ2); roo2 (µ̂2; µ2); too2 (µ̂2; µ2)) and from (13), agent 2 will

choose the latter, and so 1 will collect the large sum p¤. By contrast, agent 1

will not disagree if µ̂2 is truthful - i.e., µ̂2 = µ2 - because otherwise (regardless

of what µ̂
0
2 he announces) (12) implies that agent 2 will choose (ro1(µ2; µ̂

0
2);

ro2(µ2; µ̂
0
2); to2(µ2; µ̂

0
2)), thereby requiring 1 to pay a large …ne himself. But this

in turn means that agent 2 will announce truthfully because by doing so he

can avoid the large …ne that would be entailed by 1’s disagreeing. Similarly,

agent 1 will be truthful in Stage 1, and agent 2 will disagree if and only if

1 is untruthful. Because both agents are truthful in equilibrium, the desired

outcome f (µ1; µ2) results in Stage 3.

Herein we have examined only one simple example of implementation in

a re…nement of Nash equilibrium. For more thorough treatments, see the

surveys by Moore(1992), Palfrey(2001), or Maskin and Sjöström(2001).

4 Incomplete Information

We next turn to incomplete information. This is the case in which agent i

observes only his own type µi.

4.1 Dominant Strategies

A mechanism (M; g) that has the property that each agent has a dominant

strategy - a strategy that is optimal regardless of the other agents’ behavior

- is clearly attractive since it means that an agent can determine his optimal
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message without having to calculate those of other agents, a calculation may

be particularly complex under incomplete information.

Formally, a strategy ¹i for agent i is mapping from his type space £i to

his message space Mi: A strategy, ¹i : £i ! Mi; is dominant for type µi if:

Ui(g(¹i(µi);m¡i); µi) ¸ Ui(g(m0i;m¡i); µi)

for all m0
i 2Mi; m¡i 2M¡i: A strategy pro…le ¹= (¹1; :::; ¹N) is a dominant

strategy equilibrium if, for all i and µi, ¹i(µi) is dominant for µi:

A social choice function f is implemented in dominant strategy equilibrium

by the mechanism (M; g) if there exists a dominant strategy equilibrium ¹

for which g(¹(µ)) = f(µ) for all µ 2 £:5

Of course, implementation in dominant strategy equilibrium is a demand-

ing requirement, and so perhaps not surprisingly it is di¢cult to attain in

general:

Theorem 3 (Gibbard(1973) and Satterthwaite(1975)) Suppose that £ con-

sists of all strict preference orderings. Then, any social choice function that

is implementable in dominant-strategy equilibrium and whose range includes

at least three choices is dictatorial.

Proof. Suppose that f is implementable in dominant-strategy equilib-

rium and that the hypotheses of the theorem hold. Consider µ; µ0 2 £ such
5Notice that, unlike with implementation in Nash equilibrium, we require only that

some dominant strategy equilibrium outcome coincide with f (µ), rather then that there
be a unique equilibrium outcome. However, multiple equilibria are not typically a seri-
ous problem with dominant strategies. In particular, when preferences are strict (i.e.,
indi¤erence is ruled out), the dominant-strategy equilibrium outcome is, indeed, unique.
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that f(µ) = y and, for all i,

Ui(y; µi) ¸ Ui(y0; µi) implies Ui(y; µ0i) ¸ Ui(y0; µ0i) (14)

for all y 0. By assumption, there exists a mechanism (M; g) with a dominant-

strategy equilibrium ¹ such that g(¹(µ)) = y. We claim that

g(¹(µ0)) = y: (15)

To see why (15) holds, suppose that

g(¹1(µ
0
1); ¹2(µ2); :::; ¹N(µN)) 6= g(¹(µ)) = y:

Then

U1(g(¹1(µ01); ¹2(µ2); :::; ¹N(µN)); µ01)) > U1(y; µ01); (16)

a contradiction of the assumption that ¹1(µ1) is dominant for µ1. Hence,

g(¹1(µ
0
1); ¹2(µ2); :::; ¹N(µN)) = y

after all. Continuing iteratively, we obtain

g(¹1(µ01); ¹2(µ02); ¹3(µ3); :::; ¹N(µN)) = y;

and

g(¹(µ0)) = y: (17)

But (17) implies that f(µ0) = y. We conclude that f is monotonic, and so

Theorem 2 implies that it is dictatorial.

In contrast to the pessimism of Theorem 3, Vickrey (1961) and, more

generally, Clarke (1971) and Groves (1973) have shown that much more
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positive results are obtainable when agents’ preferences are quasi-linear.

Speci…cally, suppose that we wish to implement a social choice function

f(µ) = (r1(µ); :::; rN(µ); t1(µ); :::; tN(µ)) entailing Pareto-e¢cient pollution re-

duction, i.e., such that
NX

i=1

ri(µ) = r¤(µ); (18)

where r¤(µ) solves

r¤(µ) = arg max
NX

i=1

µi
p
r ¡ r: (19)

If community j is not allocated any transfer by the mechanism, then j solves

max µj
sX

i 6=j
ri + rj ¡ rj; (20)

which clearly does not result in the total reduction being r¤(µ). To bring

the maximands of individual communities and overall society into line, we

shall give community j a transfer equal to the sum of the other communities’

payo¤s (net of transfers):

tj(µ̂) =
X

i 6=j
(µ̂i

q
r¤(µ̂) ¡ ri(µ̂)) + ¿j(µ̂¡j); (21)

where ¿ j(:) is an arbitrary function of µ¡j. A mechanism in which each agent

j announces µ̂j and the outcome is (r1(µ̂); :::; rN(µ̂); t1(µ̂); :::; tN(µ̂)) where

(r1(:); :::; rN(:)) satis…es (18) and (19), and (t1(:); :::; tN(:)) satis…es (21), is

called a Groves scheme (see Groves (1973)).

We claim that, in a Groves scheme, community j’s telling the truth (an-

nouncing µ̂j = µj) is dominant for µj for all j and all µj. Observe that in
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such a mechanism, community j’s overall payo¤ if it tells the truth and the

other communities announce µ̂¡j is

µj
q
r¤(µj; µ̂¡j) ¡ rj(µj; µ̂¡j) +

X

i 6=j
(µ̂i

q
r¤(µj; µ̂¡j) ¡ ri(µj; µ̂¡j)) + ¿j(µ̂¡j)

= (µj +
X

i 6=j
µ̂i)

q
r¤(µj; µ̂¡j)¡ r¤(µj; µ̂¡j) + ¿ j(µ̂¡j):

But from (19),

(µj +
X

i6=j
µ̂i)

q
r¤(µj; µ̂¡j)¡ r¤(µj; µ̂¡j) + ¿ j(µ̂¡j) (22)

¸ (µj +
X

i 6=j
µ̂i)

p
r0 ¡ r0 + ¿j(µ̂¡j)

for all r0. In particular, (22) holds when r0 = r¤(µ̂j; µ̂¡j), which then implies

that taking µ̂j = µj is dominant as claimed.

Thus, with one proviso, a Groves scheme succeeds in implementing the

Pareto-e¢cient pollution reduction. The proviso is that we have not yet

ensured that the transfer functions (21) are feasible. One way of ensuring

feasibility is to take

¿ j(µ̂¡j) = ¡max
r

X

i 6=j
(µ̂i

p
r ¡ r)

for all j .

Then, community j ’s transfer becomes

tj(µ̂) =
X

i 6=j
(µ̂i

q
r¤(µ̂) ¡ ri(µ̂i))¡ max

r
(
X

i 6=j
µ̂i

p
r ¡ r): (23)

When transfers take the form (23), a Groves scheme is called a pivotal mech-

anism or a Vickrey-Clarke-Groves mechanism. Notice that the transfer (23)

is always (weakly) negative, ensuring feasibility.
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The logic underlying (23) is straightforward. If community j’s announce-

ment has no e¤ect on the social choice, the community pays nothing. How-

ever, if it does change this choice (i.e., it is “pivotal”), j pays the correspond-

ing loss imposed on the rest of society. Although the pivotal mechanism

is feasible, it is not balanced, i.e., the transfers do not sum to zero. In-

deed, as shown by Green and La¤ont (1979), no Groves scheme is balanced.

Furthermore, arguments due to Green and La¤ont (1977) imply that in a

slightly more general version of our pollution example, Groves schemes are

essentially the only mechanisms that implement social choice functions with

Pareto-e¢cient pollution reductions. This motivates the search for balanced

mechanisms that invoke a less demanding notion of implementation than in

dominant-strategy equilibrium, a question we turn to in the next subsection.

We have been assuming that each community j’s payo¤ depends directly

only on its own preference parameter µj. Radner and Williams (1988) extend

the analysis to the case when j’s payo¤ may depend on the entire pro…le µ.

We have also been concentrating on the case of Pareto-e¢cient social choice

functions (or at least social choice functions for which the pollution reduc-

tion is Pareto-e¢cient), Dasgupta, Hammond, and Maskin (1980) examine

dominant-strategy implementation of more general social choice functions.

4.2 Bayesian Equilibrium

Dominant-strategy equilibrium requires that each agent be willing to use his

equilibrium strategy whatever the behavior of the other agents. Bayesian
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equilibrium requires only that each agent be willing to use his equilibrium

strategy when he expects other agents to do the same. A couple of points

are worth noting here. First, because agents’ equilibrium strategies depend

on their types but, given the incomplete information, an agent does not

know others’ types, we must specify his beliefs about these types to com-

plete the description of the model. Second, if a social choice function is

implementable in dominant-strategy equilibrium, then it is certainly imple-

mentable in Bayesian equilibrium, so by moving to the latter concept, we are

weakening the notion of implementation.

We assume that agents’ types are independently distributed; the density

and distribution functions for agent i of type µi 2 [a; b] are pi(µi) and Pi(µi)

respectively. We suppose that these distributions are common knowledge

amongst the agents. Hence, the c.d.f. for agent i’s beliefs over the types of

the other agents is given by Fi(µ¡i) ´ Q
j 6=i Pj(µj).

There are two critical conditions that a social choice function must satisfy

to ensure that it is implementable in Bayesian equilibrium (see Postlewaite

and Schmeidler (1986), Palfrey and Srivastava (1989) and Jackson (1991)).

The …rst is Bayesian incentive-compatibility. A social choice function f is

Bayesian incentive compatible (BIC) if

Eµ¡i [Ui(f(µi; µ¡i); µi)] ¸ Eµ¡i [Ui(f(µ0i; µ¡i); µi)]

for all i; and µi; µ0i 2 £i, where

Eµ¡i [Ui(f(µi; µ¡i); µi)] =
Z

£¡i
Ui(f(µi; µ¡i); µi)dFi(µ¡i):
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The second condition is the incomplete-information counterpart to monotonic-

ity. For this purpose, we de…ne a deception for agent j to be a function

®j : £j ! £j. A deception ® is a pro…le ® = (®1; :::; ®N). A social choice

function f is Bayesian monotonic if for all deceptions ® such that f ± ® 6= f

there exist j and a function ° : £¡j ! Y such that

EUj(f(µj; µ¡j); µj) ¸ EUj(°(µ¡j); µj)

for all µj 2 £j; and

EUj(f (®(µ0j; µ¡j); µ
0
j) < EUj(°(®¡j(µ¡j)); µ

0
j)

for some µ0j 2 £j:

Jackson (1991) shows that in quasi-linear settings, such as our pollution

example, BICand Bayesian monotonicity are not only necessary but su¢cient

for a social choice function to be implementable in Bayesian equilibrium.

Let us return to our pollution example. We noted in the previous subsec-

tion that a social choice function entailing Pareto-e¢cient pollution reduction

(i.e., reduction satisfying (18) and (19)) cannot be implemented in dominant-

strategy equilibrium if it is balanced. However, this negative conclusion no

longer holds with Bayesian implementation.

To see this, consider a pollution reduction pro…le (ro1(µ); :::; roN(µ)) that

is Pareto-e¢cient (i.e.,
PN
i=1 r

o
i (µ) = r¤(µ), where r¤(:) satis…es (19)). Con-

sider the mechanism in which each agent j announces µ̂j and the outcome is

(ro1(µ̂); :::; roN(µ̂); to1(µ̂); :::; toN(µ̂)), where toj(µ̂) satis…es
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toj(µ̂) =
Z

£¡j

P
i 6=j

(x̂i
q
r¤(µ̂j; x¡j) ¡ ri(µ̂j; x¡j))dFj(x¡j) (24)

¡ 1
N ¡ 1

P
i 6=j

Z

£¡i

P
k6=i

(xk
q
r¤(µ̂i; x¡i) ¡ rk(µ̂i; x¡i))dFi(x¡i):

Notice that the …rst term (integral) on the right-hand side of (24) is just

the expectation of the sum in (21). Furthermore the other terms in (24) do

not depend on µ̂j. Hence, this mechanism can be thought of as an “expected

Groves scheme.” It was …rst proposed by Arrow (1979) and d’Aspremont and

Gérard-Varet (1979).

The terms after the …rst integral in (24) are present to ensure balance. If

all communities tell the truth (we verify below that the social choice function

f(µ) = (ro1(µ̂); :::; roN(µ̂); to1(µ̂); :::; toN(µ̂)) satis…es BIC), then observe that

NX

j=1

toj(µ) =
NX

j=1

Z

£¡j

X

i 6=j
(µi

q
r¤(µj; µ¡j) ¡ roi (µj; µ¡j))dFj(µ¡j)

¡ 1
N ¡ 1

NX

j=1

X

i 6=j

Z

£¡i

X

k6=i
(µk

p
r¤(µi; µ¡i)¡ rok(µi; µ¡i))dFi(µ¡i)

=
NX

j=1

Z

£¡j

X

i 6=j
(µi

q
r¤(µj; µ¡j) ¡ roi (µj; µ¡j))dFj(µ¡j)

¡ 1
N ¡ 1

NX

j=1

Z

£¡i

X

i 6=j
(µi

q
r¤(µj; µ¡j) ¡ roi (µj; µ¡j))dFj(µ¡j)

= 0;

as desired.

To see that BIC holds (so that truth-telling is an equilibrium) note that
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if f (µ) = (ro1(µ); :::; roN(µ); to1(µ); :::; toN(µ)), then, for all j; µj; µ0j; and µ¡j,

Eµ¡j [Uj(f(µ
0
j; µ¡j); µj)] (25)

= Eµ¡j [µj
q
r¤(µ0j; µ¡j) ¡ roj(µ0j; µ¡j) + toj(µ0j; µ¡j)]

= Eµ¡j [µj
q
r¤(µ0j; µ¡j) ¡ roj(µ0j; µ¡j)

+ Eµ¡j
X

i 6=j
(µi

q
r¤(µ0j; µ¡j)¡ roi (µ0j; µ¡j))];

where the last line of the right-hand side of (25) corresponds to the …rst term

of toj (µ
0
j; µ¡j) as given by the right-hand side of (24), but with all but the …rst

term omitted (since the other terms on the right-hand side of (24) do not

depend on µ0j and hence do not a¤ect incentive compatibility for community

j). But the last line of the right-hand side of (25) can be rewritten as

Eµ¡j [(
NX

j=1

µi)
q
r¤(µ0j; µ¡j) ¡ r¤(µ0j; µ¡j)]: (26)

By de…nition of r¤(µ), the square-bracketed expression in (26) is maximized

when µ0j = µj. Hence from (25) and (26), we have

Eµ¡j [Uj(f(µ
0
j; µ¡j); µj)] · Eµ¡j [Uj(f(µj; µ¡j); µj)];

as required for BIC.

One can readily show that f also satis…es Bayesian monotonicity (but we

will refrain from doing so here). Hence, we conclude that it is implementable

in Bayesian equilibrium (actually, it turns out that the equilibrium outcome

of the expected Groves mechanism is not unique, so, without modi…cation,

that mechanism does not actually implement f). Thus, relaxing the notion
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of implementability from dominant-strategy to Bayesian equilibrium permits

the implementation of balanced social choice functions. On the downside,

however, note that the very construction of the expected Groves mechanism

(or an expected Groves mechanism that is modi…ed so as to ensure unique

equilibrium) requires common knowledge of the distribution of µ.
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