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Theories of focal points typically assume that games have

inherent labelings or “frames” and then construct models of how players
perceive and exploit these frames to identify focal equilibria. This paper
asks instead how evolutionary considerations determine which aspects of a
frame are likely to be monitored by the players. Efficient monitoring turns
out to be an unlikely outcome.
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THE EVOLUTION OF FOCAL POINTS

by Ken Binmore and Larry Samuelson

1 Introduction

Thomas Schelling once observed that focal points have done more for the
theory of games than game theory has done for the theory of focal points.!
This paper seeks to make amends by showing that evolutionary game theory
can explain how contextual cues become focal in pure coordination games.

Schelling’s [16, p. 55] best-known example concerns two strangers who
are unable to communicate but urgently need to meet in New York City,
having fixed a time but not a location for their meeting. Most of the partic-
ipants in Schelling’s informal experiments in the fifties chose Grand Central
Station as their attempted meeting point. Of the many possible equilibrium
locations, Grand Central Station was focal.

1 2 3 O O
1 1 0 0 O 1 0 0
1 0 0 1 0 0
9 0 1 0 O 0 1 0
0 1 0 0 1 0
3 0 0 1 0 0 1
0 0 1 0 0 1

Figure 1: The 3 x 3 game of pure coordination.

Game theorists model such a problem as a game of pure coordination.
Figure 1(a) is an example with three strategies. In our analysis, we assume
the players know nothing whatever about the labeling of the strategies unless
they receive some additional framing information. Their ignorance extends
even to such questions as which strategy corresponds to the top row or
middle column, conventions that arise only in the course of constructing the
game theorist’s model. Whatever the players do in such a state of ignorance,
the result is equivalent to their using each pure strategy with probability %.2
They then get their worst possible equilibrium payoft.

LAt the Arne Ryde Conference held in his honor in Lund, Sweden on August 23, 1997.
2This is why the equilibrium selection theory of Harsanyi and Selten [8] selects this
mixed equilibrium as the solution of a pure coordination game.



Real-life games come with frames that relate strategies to the context in
which the game is played. Bacharach [1], Bacharach and Stahl [2], Casajus
[5], Sugden [18] and others have asked how players perceive and use such
a framing to locate focal points. A major concern is the extent to which
a frame allows the players to coordinate on an efficient equilibrium of the
game. For example, when the strategies were framed as locations in New
York City, most participants in Schelling’s experiments obtained the efficient
equilibrium payoff of one by choosing Grand Central Station.

How do frames arise? Why do we choose to pay close attention to some
environmental signals and not others? Is framing information likely to be
efficiently used? We explore an evolutionary approach to such questions, on
the understanding that cultural evolution is at least as important as biolog-
ical evolution in the case of human coordination. We find that efficient focal
mechanisms are unlikely to survive, even when all the obvious obstacles to
efficient coordination are absent. We defend this conclusion using a number
of evolutionary stability criteria.

2 Evolution and Focal Points

This section presents a simple example illustrating the efficient use of fram-
ing information and the attendant evolutionary considerations.

The Square Game. Suppose that each time Nature calls for the 3 x 3
pure coordination game of Figure 1(a) to be played, she frames it by labeling
some strategies with a square. If each strategy is independently assigned a
square (or not) with probability 3, the probability of the configuration shown
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in Figure 1(b) is &. In this configuration, the players make the best use of
their framing information by coordinating on the strategy without a square,
so that each receives the maximal payoff of one.

Configurations with a similar odd-man-out occur with a total probability
of 2. However, with probability 1, either all or none of the strategies are
assigned a square. The strategies are then indistinguishable, and anything
the players may do is equivalent to randomizing their choice, for an expected
payoff of . Their overall expected payoff is therefore

Ix14+ixi=2
The Red Square Game. Suppose that Nature now enriches the frame
by independently coloring some strategies red in the same way that she



assigns some strategies a square. With probability L, all three strategies
will still be indistinguishable, so that the players can achieve a payoff of only
1. With probability 12, at least one strategy bears a joint property shared
by no other strategy. It may be, for example, that only one strategy is red
but not square. The players can then achieve perfect coordination, provided
that they are party to a convention that allows them to resolve ambiguities
when there is more than one such odd-man-out. Adding color to the frame

therefore improves the players’ overall expected payoff to

15 1 1 __ 23
X1+ xg=25.

The previous literature on framing in a game-theoretic context has largely
concentrated on how we manage to adjudicate between rival focal points.
For example, is a strategy that is red but not square more focal than a
strategy that is square but not red? We bypass this important psychologi-
cal issue by always assuming that the players use the framing information
efficiently. For example, the information provided by the Red Square frame
is used efficiently when both players employ the Shape-then-Color conven-
tion, in which a player chooses an odd-man-out in shape if there is one, and
otherwise chooses an odd-man-out in color if one exists (failing which the
choice is necessarily random). We confine attention to such efficient conven-
tions in order to concentrate on an unstudied source of inefficiency—that
which arises when the players pay insufficient attention to the information
provided by the frame.

Costly Monitoring. Although we are seldom conscious of paying the
costs, it must nevertheless be costly to monitor framing information. We
are deluged with too much information to make use of it all, and the in-
formation in a framing can be processed only at the expense of ignoring
something else. We capture such costs in this example by supposing that,
before being confronted with the Red Square Game, players are programmed
by an evolutionary process to monitor shape or color. Monitoring only one
property costs nothing. Monitoring both incurs a cost of ¢ > 0.

Choosing what to monitor is itself a strategy in an impure coordination
game. The strategies in this “monitoring game” are to be understood as
monitoring both properties, or monitoring only one property. In the latter
case, we assume that a convention is in place ensuring that both players
choose the same property. We can then represent the game as in Figure 2.

The payoff B is the expected utility received by both players in the
underlying pure coordination game when a player who monitors both prop-

erties meets a player who monitors only one property. Observe that B < 22,
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Figure 2: A monitoring game.

because a player cannot coordinate more with an opponent than a player
who monitors the same information as the opponent. In our example, we
assume that

B =

l\Dll\D
wlo

)

which is achieved when a player who monitors both properties uses the
Shape-then-Color convention, and a player who monitors only one property
uses the Shape-only convention.® In more complex games, this upper bound
on B cannot always be attained.

When ¢ > i, the cost of monitoring a second property outweighs the
value of the additional information and it is a strictly dominant strategy to
monitor only one property. If ¢ < %, each strategy corresponds to a strict
Nash equilibrium. The efficient equilibrium in this case requires monitoring
both properties, but we shall see that evolutionary arguments may favor the
inefficient equilibrium in which only one property is monitored.

Evolutionary Dynamics. In redirecting attention from games of pure
coordination to the monitoring games within which they are embedded, we
replace one equilibrium selection problem by another. So what progress
has been made? Owur approach is to regard behavior in the monitoring
game as the outcome of an evolutionary process rather than of conscious
choice. This allows us to bring evolutionary considerations to bear on the
equilibrium selection problem.

When ¢ < £, the monitoring game of Figure 2 has three Nash equilibria.
The two pure equilibria correspond to the strategies both and one. Which
will evolution select? Both are strict Nash equilibria, and so both are evolu-
tionarily stable (Maynard Smith and Price [11], Selten [17]). It is therefore
necessary to look more deeply into the dynamics of the evolutionary process
that motivates the definition of evolutionary stability.

3If the latter player uses the Color-only convention, then B = ﬁ < 3—2.
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Figure 3: Basins of attraction.

If the stochastic element of an evolutionary process is sufficiently small,
then a deterministic model such as the replicator dynamics of evolutionary
biology will suffice to predict with high probability the equilibrium of a
game that the dynamic system will approach in the first instance (Binmore,
Samuelson and Vaughan [3]). The mixed equilibrium in our example is
shown as the point M in the phase diagram of Figure 3. It corresponds
to a distribution of the underlying population in which a fraction 8c of
the population play both, and the remainder play one. The arrows in the
phase diagram show the evolutionary flows of any monotonic deterministic
evolutionary dynamics (Samuelson and Zhang [15]). The population states
in which everybody plays both or everybody plays one are stable with respect
to such dynamics, but M is unstable. In the long run, the system converges
on one of the two stable equilibria, but the equilibrium selected depends on
where the system starts.

If we are interested in very long periods of time, then even very small
stochastic perturbations must be explicitly considered, since they will occa-
sionally bounce the system from one equilibrium’s basin of attraction into
the other (Young [20], Kandori, Mailath and Rob [10]). We will therefore
find the system sometimes near both, and sometimes near one. We say that
an equilibrium is selected in the ultralong run if it is almost certain that
the system will be found in its vicinity when the perturbations are made
sufficiently small.®

The equilibrium with the larger basin of attraction in our example is
said to be risk dominant (Harsanyi and Selten [8]). Whichever equilibrium
assigns the players the larger payoff is payoff dominant. In our example,
both is payoff dominant, and one is risk dominant when & < ¢ < L. Since

16
evolutionary dynamics typically select the risk-dominant equilibrium in the

4The expected waiting times before ultralong-run predictions are realized may be very
long, even by geological standards. However, Binmore, Samuelson and Vaughan [3] show
that more realistic models based on the kind of reasoning that leads to the replicator
dynamics have expected waiting times that make predictive sense. Young [21] has also
shown that expected waiting times can be greatly reduced when the process that selects
players to play a game is viscous, which means that it favors matches between neighbors.



ultralong run,® we should then expect to see only one property being moni-

tored, although it is efficient to monitor two properties.

The cause of this inefficiency is not that there is a mismatch between
individual and joint incentives—the efficient outcome is an equilibrium. It
lies in an inefficient balancing of the costs and benefits of monitoring infor-
mation.

3 A Model of Focal Points

The rest of the paper shows that the evolutionary selection of inefficient equi-
libria in monitoring games is a general phenomenon. This section outlines
our model.

Pure Coordination. Our techniques apply to multiplayer games of im-
pure coordination, but we sharpen the results by considering only two-player
games of pure coordination. Each player has the strategy set {1,2,...,N}
and the payoff function

1 if ny=ny

0 otherwise ’

7T(7’Ll, 712) = {
where n; and ng are the choices of players 1 and 2. The strategy labels
{1,2,..., N} cannot themselves be used to coordinate behavior (Crawford
and Heller [6]). In keeping with Schelling’s New York example, we are
particularly interested in the case when N is large.

Frames. We postulate that each pure strategy of the game potentially
satisfies each of a number of properties: Py, P, ..., Py. Examples of possible
properties include square, first, red, central, brightest, top-left.

Formally, a property is a random function P; : {1,...,N} — [0,1],
where P;(n) = 1 means that strategy n has property i. Properties are
assigned randomly in our model to reflect the fact that players are likely
to encounter the coordination game in many different contexts. A frame
for the game is the random process that determines which properties are

®Young [20] and Kandori, Rob and Mailath [10] study stochastic dynamics in which
the risk-dominant equilibrium is always selected. Binmore, Samuelson and Vaughan [3]
examine a model in which both continues to be selected, despite being risk dominated,
when c is slightly larger than -=, but in which one is (inefficiently) selected for larger values
of c. Some evolutionary models always select the payoff-dominant equilibrium (Robson
and Vega Redondo [12]), but these require rather special circumstances.



realized each time that Nature decides that the coordination game is to be
played. Although properties are assigned independently across strategies
in our examples, we make no general independence assumptions concerning
either the realization of a given property across strategies or the realizations
of different properties. Otherwise we would not be able to accommodate
properties like brightest or top-left.

Nature is given her best chance at creating efficient focal points by as-
suming that players who pay attention to the same framing information use
it with maximal efficiency. They first use the framing information to iden-
tify sets of pure strategies in the underlying game of pure coordination that
are of minimal size. A commonly held convention then selects one of these
minimal sets. Each pure strategy in the focal set is then played with equal
probability. We say that the selected set is focal.

One independent property. Suppose the frame independently assigns
a single property to each strategy with probability p. If players costlessly
monitor only one property, what value of p maximizes their expected payoff?
Section 6.1 shows that the optimal p for a coordination game with N
strategies is either p*(N) or 1 — p*(N), where p* = : N when N < 4, but

p*(N)~1.3N"!

when N is sufficiently large. This result for large N illustrates the balance
that a useful coordination property must strike. A property that is likely to
be shared by too many strategies is unhelpful, because it is too ambiguous,
frequently forcing the players to mix over large sets of strategies satisfying
the property. A property that is sufficiently rare as to be unlikely to be
shared may often hold for no strategy at all, providing no help with coordi-
nation. For large N, the optimal property balances these forces by setting
the expected number of realizations to be just over one.

Many independent properties. Suppose that there are M indepen-
dently assigned properties, with any given strategy satisfying property F;
with probability p;. Section 6.2 shows that if the probabilities p; can be cho-
sen at will, then perfectly efficient coordination is approached very rapidly
as the number of properties grows. With M properties, the expected payoff
for large values of N is at least

q

2M—1



With five properties, for example, the efficiency loss is less than 0.001, no
matter how large N may be.

This nearly perfect coordination is achieved by an optimal frame con-
sisting of M — 1 properties with p; = 1, and one property with either pys or
1 — pas equal to p*(IN)2M~1 where p*(IV) is the same as in the case of only
one property. The M — 1 properties with p; =  are very likely to partition
the N strategies into 21 subsets of approximately the same size. The final
property can then be viewed as a chance at isolating a single strategy in one
of these subsets to serve as a focal point. The value p*(N)2M~1 allows this
chance to be taken optimally in each of the 2M~1 subsets of size N/2M 1,
Except when M is quite small, the risk of these 21 independent attempts

failing to isolate any strategy in any of these subsets is tiny.

Paying Attention The finding that a handful of well-chosen independent
properties can lead to nearly perfect coordination contrasts with the obser-
vation that focal points are often difficult to locate. Grand Central Station
may have seemed an obvious meeting point for New Yorkers in the fifties,
but where is the corresponding focal point in contemporary Columbus?

One difficulty is that we seldom have the luxury of working with opti-
mally designed properties. Nor is it costless to monitor the information that
a frame provides. For example, when a frame labels strategies with words,
we do not ask ourselves whether one of these might be an anagram of a
Brazilian poet’s name, presumably because the added benefit of monitoring
such properties closely does not justify the cost. We therefore introduce
monitoring costs that increase with the amount of attention that a player
pays to various properties.

Costs and Benefits. The intensity o; € R4 with which a player monitors
each property F; is chosen by evolution. The intensities aq,...,ays deter-
mine the probabilities with which a player recognizes whatever realizations
(if any) of each property have occurred in a framing of the coordination
game.® A monitoring strategy is a vector a of intensities determined before
anything else happens.

Just as the realizations of properties need not be independent, the event
that two properties are observed need not be independent. A player who
observes which strategy is largest (if any) may also be likely to observe

5Hence, monitoring a property with positive intensity does not ensure that some strat-
egy exhibits the property, nor that the property will be observed even when it holds for
some strategies.



smallest.

A player using the monitoring strategy « who faces a player using the
monitoring strategy ( derives a benefit B(a, ), which is the probability
that they succeed in coordinating on the same strategy in the underlying
pure coordination game. Our first assumption, derived from more primitive
assumptions on the monitoring technology in Section 6.3, registers the min-
imal requirements on the benefit function B consistent with its derivation
from an underlying game of pure coordination.

Assumption 1
(1.1) B(e, B) = B(B, ).
(1.2) B(a, 8) < min{B(«a, ), B(5,5)}.

The payoff or fitness derived from using « is the difference between the
expected benefit and the cost C'(«) of choosing a.. The cost is paid regardless
of whether any strategy in the pure coordination game actually turns out
to have one of the monitored properties, or whether a realized property is
actually used for anything after being observed. In thinking about C(«),
we recognize that it may cost little to monitor a useful property like biggest
and much to monitor a property like anagram of a Brazilian poet’s name.
We also recognize that increasing expenditure on monitoring a property like
largest may reduce the cost of monitoring a property like smallest.

Our second assumption imposes some regularity conditions on the cost
function C, and the function A defined by

A(a) = B(a, a),

which is the benefit in the efficient case when both players use the same
monitoring strategy. (See Section 6.3 again.)

Assumption 2
(2.1) A is increasing and continuously differentiable.
(2.2) C is increasing and continuously differentiable.

We let Ay(a) and Cy(a) denote the directional derivatives of the functions

A and C in the direction of a unit vector u.

Assumption 3
(3.1) C is strictly convex.
(8.2) A—C is strictly concave.



This assumption removes some obvious obstacles to the selection of an effi-
cient equilibrium in the monitoring game. The concavity of A — C' ensures
the existence of a unique efficient monitoring strategy. Section 6.4 illus-
trates how the failure of this assumption can trap evolution at an inefficient
local optimum. Adding the convexity of C ensures that the “risk dominant”
equilibrium is unique, simplfying some of the results below.

The benefit function B(a, ) need not be a concave function of 3. How-
ever, it will sometimes be useful to make the following assumption.

Assumption 4 Within the space of monitoring strategies, B(«, 3) is a con-
cave function of B on any line through B = «.

Although A and C' are assumed to be differentiable, the next paragraph
shows why the benefit function B can be differentiable at («, «) only in
pathological cases. However, left and right directional derivatives of B with
respect to one of its variables commonly exist. Let B; (a,«a) denote the
“right” directional derivative, i.e. the derivative taken when moving away
from « in the direction of u. The symmetry of B ensures that this derivative
is the same, whether taken with respect to the first or second variable.
Similarly, B, (a,«) is the “left” directional derivative, i.e. the derivative
taken when moving in the direction of v towards «. If these directional
derivatives exist and are continuous at (a, ), we say B is semi-differentiable.

Observe that By (a,a) > 0 > B (a, &) by Assumption 1.2. Section 6.5
shows that Assumption 4 and semi-differentiability imply

Au(e) = B (o, @) + By (o, @) (1)

As a result, B, (o, a) = B;f (a, ) implies A,(a) = 0. The function B(a, 3)
therefore cannot normally be a differentiable function where § = a.

The final assumption is needed only when considering stochastic poten-
tial. It says that the benefit sacrificed when deviating from « to ( is greater
when the other player is coordinating by also playing o than when he or she
is miscoordinating by playing some other monitoring strategy -.

Assumption 5 B(a,a) — B(3,a) > B(a,y) — B(8,7).-

The Square Monitoring Game. We associate a monitoring game with
the Square Game of Section 2 by identifying a player’s monitoring intensity
with the probability that he or she observes an odd-man-out when one exists.
We assume that the players’ observations are perfectly correlated, by which
we mean that a player who monitors a property with intensity a observes

10



whatever is observed by a player who monitors the same property with
intensity § < a, and perhaps more. (See Section 6.3.) We then have that
B(a,B) =108+ (1 —13)i, when 8 < a. Thus A(a) = Ja+ 1, and

o= { 4 £955 :

Let the cost function be C(a) = 1a?. Then Assumptions 1-5 all hold. Also,
B is semi-differentiable, with By (a,a) = A'(a) = 3, and B (a,a) = 0
when u points to the right.

The Red Square Monitoring Game. We associate a monitoring game
with the Red Square Game of Section 2 by supposing that the monitoring
strategy @ = (aj,a9) results in a player identifying an odd-man-out in
shape (when one exists) with probability a;, and an odd-man-out in color
(when one exists) with probability as. Again, players’ observations are
perfectly correlated. Assuming that both players use the Shape-then-Color
convention, we have

B(a, ) =3my + ima(1 — 2M;) + 4,

where m; = min{a;, 3;} and M; = max{a;,3;}. Let C(a) = L(a? + a3).
Then Assumptions 1-5 hold. Also, B is semi-differentiable, with B (a, o) =
0 when u = (1,0).

4 Evolutionarily Stable Monitoring

4.1 Efficient equilibria.

The monitoring game is assumed to be unframed, and so only its symmetric
equilibria are relevant.
A pure strategy « corresponds to a symmetric equilibrium when

A(a) = C(a) =z B(a, B) — C(B)

for all B. Assumption 1 ensures that this inequality always holds when
C(B) > C(a). When C(f) < C(«), it is implied by the inequality A(5) —
A(a) < C(B) — C(a) < 0. By Assumptions 2-3, the latter is equivalent to

0< <1, (3)



for all directional derivatives A, and C, for which u points into the space
of monitoring strategies, and for which Cy(a) < 0. As a result, there will
typically be a multitude of equilibria. This is to be expected. Framing
information is valuable only to the extent that it facilitates coordination.
There are then many monitoring intensities that will be optimal if but only
if they are chosen by one’s fellow players. For example, all monitoring
strategies a with a < 1 correspond to symmetric equilibria in the Square
Monitoring Game.

Section 6.6 shows that efficient monitoring intensities must be pure.
An efficient strategy a* therefore maximizes A(a) — C'(a), and so satisfies
Ay(a*) = Cy(a*) for all u pointing into the space of monitoring strategies.
Assumption (3) ensures that there is a unique efficient strategy.

The efficient monitoring strategy in the Square Monitoring Game is a* =
1, which is the largest equilibrium strategy. More generally, (3) implies:

Lemma 1 The efficient strategy o corresponds to an equilibrium of the
monitoring game.

Notice that a* only just satisfies the second inequality in (3), which is
our first indication that efficiency is evolutionarily precarious in monitor-
ing games.

To avoid special cases, we assume that the efficient strategy o* is interior,
so that A,(a*) = Cy(a*) for all directions u. Every property is monitored
with positive intensity at an interior monitoring strategy, and so will some-
times be used in identifying a focal point. When properties are monitored
with low intensity, this is unlikely to be a conscious activity. As Schelling
observed, one often does not anticipate what properties might make a strat-
egy focal in unusual situations until confronted with the need to make a
coordinating decision. For example, people commonly don’t ask themselves
whether going to Grand Central Station is one of their options until forced
to consider possible meeting points in New York City.

4.2 Invasion barriers

Vickers and Canning [19] point out that it is empty to say that a strategy «
is evolutionarily stable in an infinite game, unless it admits a positive global
invasion barrier €*(c). (See also Bomze and Pétscher [4].) This means that
a mutant must take control of a fraction €*(«) or more of a population using
strategy « before it can invade under a monotonic evolutionary dynamic—no

12



matter what alternative strategy 8 the mutant adopts.”

A strategy’s global invasion barrier provides a guide to how long the
strategy is likely to survive before succumbing to a mutant invasion. The
larger the barrier, the less likely are mutants to arrive in sufficient strength to
overwhelm the existing strategy, and the longer can we expect the strategy
to persist.

Definition 1 Let II(a, (1—€)a+€3) be the expected payoff to a player using
monitoring strateqy a in a population of which a fraction 1 — € use o, and
a fraction € use 3. Then the global invasion barrier €*(«) of « is

€(a) =sup{e: f#a=1(o, (1 —€)a+¢€e8) >I(F, (1 —e)a+€f)}.

To simplify the notation we adopt the convention that attributing a negative
value to €*(a) is equivalent to asserting that €*(a) = 0. Attributing a value
to €*(a) that exceeds one is equivalent to asserting that e*(a) = 1.

Proposition 1 The global invasion barrier of « is

e [ CB) = Cla) = B(a,B) + Afa)
6(“>—ﬂ¢i{ A(a) + A(B) — 2B(a, ) }

If B is semi-differentiable and satisfies Assumption 4, then

€*(a) = inf { (5)

u

RB, +(R—1)B} RB!+(R-1)B;
Bi—Bf = Bi-Bi ’

where the infimum extends over all unit vectors u that point from « into the
space of monitoring strategies, and where R = Cy /Ay, B, and B} are all
evaluated at (o, a).

Proof. To find the fraction of a population using « that must be taken
over by a mutant using 3 before the mutant can invade, we examine the
reduced game of Figure 4. If

C(B) = C(a) = B(, ) + Ale)
Aa) + A(B) - 2B(a, B)

M(a, ) = (6)

lies in [0, 1], then the reduced game has a mixed equilibrium in which (3 is
played with probability M («, 3). A figure like Figure 3 can then be drawn

"The standard definition of an ESS allows €*(a) to be a function of 3. This freedom is
innocuous in finite games, but the infimum of all such € may be zero in an infinite game.

13



B(6,a) = C(0) A(B) = C(B)

Figure 4: The reduced monitoring game with strategies a and (.

in which the mixed equilibrium M («, 3) separates the regions where a and
0 are more fit. Hence, strategy 8 can invade if it initially seizes more than
a fraction M (v, 3) of the population. If M(a,3) > 1 then a dominates (3
and the latter can never invade. If M(a, 3) < 0, then ( is a superior reply
to a, and the invasion barrier is zero, giving (4).

To obtain (5), take 8 = a + pu in (4). Assumption 4 ensures that
M, 3) decreases as 3 approaches a from any direction. Hence, it suffices
to examine the limiting values of M(«, 3) as p — 0+ and p — 0—, which
are, respectively,

Cul0)=Bi(a) Cula)=By(a)

Ay(a) — 2B () Ay(a) = 2By (o)

(7)

If B is semi-differentiable, we can use (1) to rewrite the expressions in (7)
to obtain those in (5). I

The derivation of (5) exploits the fact that the mutant strategies that
can most easily invade a population playing « lie arbitrarily close to a. This
is the first of several indications that the mutants who are most likely to
destabilize an equilibrium lie nearby in the space of monitoring strategies.
This is consistent with the biological view of evolution. As Jacob [9] puts it,
Nature tinkers by creating small variations on what she has already created
rather than throwing “hopeful monsters” into the ring.

Corollary 1 The monitoring strategy & with the largest global invasion bar-
rier is the unique o that maximizes

Ala) — 2C(a),
It is always true that €*(&) > 1. If B is semi-differentiable and satisfies

2
Assumption 4, then €*(&) = 4.

14



Proof. The expression (6) for M(«, 3) is greater or less than 3 depending
on whether B(a) —2C(«v) is greater or less than B(5) —2C(3). But & is the
unique monitoring strategy that maximizes B(a) — 2C(«) (Assumption 3).
Hence €*(&) > 1, and €*(8) < & for any § # a. If B is semi-differentiable

and Assumption 4 holds, then B} + B, = A, = 2C, at & (by (1)). It
follows that the two ratios in (5) both equal 1, and hence so does €*(&). ||

Corollary 2 Suppose that B is semi-differentiable and satisfies the con-
cavity condition of Assumption 4. Then the global invasion barrier of the
efficient monitoring strategy o* is zero if B (a*,a*) = 0 or B, (a*,a*) =0
for some direction u.

Proof. It follows from (5) Of Proposition 1 that
€ (a*) > min{R,1 — R},

with equality when B;} = 0 or B,, = 0 for some u. But R = Cy,(a*)/Ay,(a*) =
1, giving the result. I

To interpret this conclusion, suppose that A, (a*,a*) > 0 for some unit
vector u. By (1), B (a*, a*)+ By (a*,a*) = Ay(a*), and so By (o*,a*) =0
implies that B, (a*, a*) = A,(a*, a*). A marginal reduction in the mutant’s
monitoring intensities below o* (in the direction —wu) thus has virtually
no effect on the mutant’s payoff against itself (an effect of approximately
Ay(a*) — Cy(a*) = 0) or against the efficient strategy (an effect of approx-
imately By (a*,a*) — Cy(a*) = Ay(a*) — Cy(a*) = 0). However, whenever
it plays the mutant, this reduction imposes a loss of B, (a*, a*) that is ac-
companied by no corresponding cost savings for the existing strategy. The
mutant thus earns a higher expected payoff and can invade. Again we see
the importance of local mutants, and in this case the importance of mutants
who monitor less intensely.

The Square Monitoring Game again. Inserting (2) in (6) and using
the fact that A is concave and C' convex, we have that

M(a,B) = c(ﬁ) > Cl) if B> a ¥
AB)A(q) = Al

It follows that M(a, 3) is smallest in the limit as 8 — «, and

=y 18 18}
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The efficient strategy a* = 1 has a global invasion barrier of zero. The

largest global invasion barrier of 3 occurs at @ = 1 (where A'(&) = 2C"(&)).
The efficient strategy o is therefore quite vulnerable to mutant invasion,

whereas & is relatively immune.

The Red Square Monitoring Game again. The efficient strategy a* =
(4,%) has a global invasion barrier of zero. The largest global invasion barrier

1 N — 4 4
of & occurs at & = (&, &).

Polymorphic invasions. We have focused throughout on invasions by
waves of mutants who all play the same strategy. This is especially consistent
with the biological literature, in which invasions are thought to originate
with single mutations that become established in isolated subpopulations
to which the parent population is subsequently exposed. Our results also
hold with the polymorphic invasions, except that Corollary 1 then requires
Assumption 5.

4.3 Risk Dominance

The condition that « risk dominates 3 in the reduced game of Figure 4 is

that M(a, 8) > 3 in (6). This holds if and only if
Ala) —2C(a)) > A(B) —2C(0) - (10)

We can therefore characterize the monitoring strategy & with the maximum
global invasion barrier as the strategy that risk dominates all other strategies
in pairwise comparisons. In particular:

Corollary 3 The efficient monitoring strateqy o is pairwise risk domi-
nated.

The efficient strategy o is not only risk-dominated in a pairwise com-
parison with &, but also by mutants lying arbitrarily close to, but monitor-
ing less intensely than, o*. The efficient strategy satisfies A(a*) — A(B) >
C(a*)—C(p), but g risk-dominates o if A(a*) — A(B) < 2(C(a*) —C(5)).
For mutants lying sufficiently close to a*, the first expression is nearly an
equality, and so the second expression also holds when C(8) < C(a*). We
therefore gain some insight into how the efficient strategy may be destabi-
lized by an invasion of less costly nearby strategies. At an efficient outcome
the lost benefit in monitoring slightly less intensely is just balanced by the
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decreased cost. Mutants who monitor a little less intensely therefore se-
cure only slightly less than the efficient payoff when playing against copies
of themselves, but they also achieve a saving in cost when playing against
the efficient strategy, an advantage that allows lower-cost mutants to risk-
dominate the efficient strategy in a pairwise comparison.

4.4 Stochastic Stability

We now examine a model of best-response dynamics with inertia in the spirit
pioneered by Kandori, Mailath and Rob [10] and Young [20]. If M is the
number of properties in a monitoring game, consider a grid of monitoring
strategies in ]Rf whose mesh is less than some small A > (0. Because
B(a) <1 and C(«) is increasing and convex, we can restrict attention to a
finite subset of this grid, referred to as the set of admissible strategies, that
excludes monitoring intensities which ensure negative payoffs. We assume
without loss of generality that all strategies « of particular interest are points
in the grid.

A large but finite population of 7 players play a coordination game in
a round-robin tournament each period. At the end of each period, each
player independently receives a signal with probability A > 0. Players who
receive the signal switch their strategy to a best response to the strategies
played in the previous period. Other players continue to use their previous
strategies. Each player is then independently selected to be a “mutant” with
probability p > 0. Mutants independently switch to a new strategy that is
equally likely to be any of those available in the grid.

These behavioral rules define the transition probabilities for a stochastic
process. A state of this process is a specification of the number of players
using each possible strategy in a monitoring game. The state a is to be
understood as the state in which everyone plays a. We are interested in what
happens in the ultralong run, when the mutation rates become vanishingly
small. More precisely, we seek states that are stochastically stable, which
means that they are assigned positive probability when we take the limit of
the invariant distribution of our stochastic process as p — 0 (Young [20],
Kandori, Mailath and Rob [10], Samuelson [14]).

Proposition 2 Let Assumption 5 hold. Then for sufficiently large n, the

unique stochastically stable state is &, the monitoring strateqy o that mazi-

mizes A(a) — 2C ().
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Proof. Strategy & risk dominates every other pure strategy in a pairwise
comparison and hence, for any pure strategy § in the finite set of admissible
strategies, we have

37(&, &) + 37(&, F) > 37(6, &) + 57(5, 5)- (11)

Now suppose that half of the population plays & and that proportions
k1,...,kn of the population play strategies v,,...,7,,, respectively. We
then note that, for any admissible G:

i=1 i=1 i=1
=1 =1

= im(B,4)+ > kw(B,7:),
i=1

where the inequality follows from (11) and (5) (which, by a suitable permu-
tation of «, B, and v, gives B(&,v,;) — B(&,8) > B(6,&) — B(8,5)). We
have then shown that & is a strict best response to any population in which
at least half of the agents play &, i.e., it is 1-dominant. Ellison shows that
& must then be the unique stochastically stable state ([7, Corollary 1]). ||

When there is a unique stochastically stable state, it is the root of the
“minimum-resistance” tree, where the nodes of such a tree are the states
of the system, and each edge carries a resistance which measures the min-
imum number of mutations required to get the system from the origin to
the terminus of the edge, using the best-response dynamics to hitch a free
ride where possible. We illustrate this construction in the case of the Square
Monitoring Game.

The Square Monitoring Game yet again. In considering the resis-
tance in passing from state a to state 3, the location of the mixed equilib-
rium of the reduced monitoring game containing only strategies a and ( is
relevant. If this requires that § be played with probability M («, ), then
we need [nM(«, 8)] + 1 simultaneous mutations to bounce the system from
« into the basin of attraction of . When the population size 7 is large, it
follows that the global invasion barrier of « identifies the minimum resis-
tance in passing from « to some other equilibrium g, which we say is the
“nearest” equilibrium to a.
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Figure 5: Minimizing stochastic potential in the Square Monitoring Game.

It follows from (8) that the global invasion barrier of a is C'(a)/A’ ()
when A'(a) — 2C'(a) > 0, and the “nearest” equilibrium lies immediately
to the right of a. If A’(a) — 2C"(«v) < 0, then the global invasion barrier is
1—-C"(a)/A (), and the “nearest” equilibrium lies immediately to the left.

We construct the tree shown in Figure 5 by joining each equilibrium other
than & to its “nearest” neighbor. Pending attention to two complications,
this tree minimizes total resistance. First, we have included as nodes in our
tree only states that correspond to monomorphic equilibria. However, the
best response dynamics allow us to move from any nonequilibrium state of
this game to an equilibrium without incurring any mutations, and hence
without increasing the resistance of the tree, so that the latter states can
be neglected. Secondly, we have assumed that when making a transition
from state a to 0, the minimum number of mutations can be achieved by
having all mutants play strategy §. Assumption 5 ensures that this is the
case. Hence, & is the unique stochastically stable equilibrium of the Square
Monitoring Game.

The Red-Square Monitoring Game yet again. A similar argument
allows us to draw a schematic of the minimal tree of Figure 6, whose root

lies at the inefficient equilibrium & = (&, ).

5 Discussion

In real-life games, focal or salience considerations are often used to choose
between multiple equilibria. Schelling’s [16] work shows that the process by
which we convert cues from the environment into a choice of a coordination
strategy is largely unconscious. It is only when confronted with his formal
examples—in which people are clear about what is focal without being able
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—_—

Figure 6: The minimal tree for the Red-Square Monitoring Game. The
functions are given by as/(1—30aq) = (1—1)/(1+32a2) and as/(1—20) =
1-— (1 — 041)/(1 + %O&g).

to say why—that one realizes that we must be continuously monitoring a
whole range of possible coordinating cues from the environment. We call
the collection of such contextual cues a framing of a real-life game.

Game theorists have traditionally abstracted away framing effects in or-
der to construct a world in which the question of what constitutes rational
behavior can be studied without distraction. This paper moves in the other
direction by incorporating the choice of how much attention players choose
to pay to the frame of a game as a move in an evolutionary game within
which the pure coordination game of traditional game theory is embedded.
The result is a game in which evolutionary forces will tend to select ineffi-
ciently low monitoring intensities.

The intuition is simple. Suppose that a population using inefficiently low
monitoring intensities is invaded by a mutant who monitors more intensely.
The higher monitoring costs may be more than compensated for by the
increased frequency of coordination when the mutant is matched with a
copy of itself, but the mutant continues to bear the higher monitoring costs
when playing against the incumbent strategy without any compensating
increase in benefit. As a result, increased monitoring that would be efficient
if performed by the whole population need not enjoy evolutionary success.
Conversely, efficient outcomes are vulnerable to invasion by a succession of
nearby mutants who monitor less intensely.
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Under relatively mild conditions, we argue that one is likely to find a
population at an equilibrium where marginal benefit equals twice marginal
cost—rather than at the efficient equilibrium where marginal benefit equals
once marginal cost—provided that the available time span is sufficiently
long. The two in this result appears for essentially the same reason that
one expects a stochastic evolutionary process to take a population to the
risk-dominant equilibrium rather than the payoff-dominant equilibrium in a
2 x 2 game of impure coordination.

6 Appendix

6.1 One Independent Property

Let V/(N,p) be the expected payoff in a game with IV strategies and a single
property that is independently assigned to each strategy with probability p.

Lemma 2 Let p*(N) maximize V(N,p). Then

. N 1.30
ym Pt N) o~
lim V(N,p*(N)) =~ .50.

N—o0

Proof. We have V(N,p) =

N-1
(¥ +(1=p)") % +> ( ]Z ) (P -pNF) maX{%,ﬁ}. (12)
k=1

The first term captures the event that the property either assigns a 0 to each
strategy or assigns a 1 to each strategy, providing no help with coordination
and dooming the players to a payoff of 1/N. The summation captures those
cases in which at least one strategy is assigned a 1 and at least one strategy
is assigned a (0. The maximum appears in the final term because players
facing k 1s can either coordinate on the 1s to achieve a payoff of 1/k or
coordinate on the complementary Os to achieve a payoff of 1/(N — k), and
will do whichever produces the higher payoff.

For each integer N > 1, let py maximize V(N,p). The probability of
precisely k ones being drawn in N independent trials is

N _ N -1 _ 1) (k—
( . )pl]cv(l_pN>N k:pNNk< P )pfv 1(1_p>((N 1—(k-1)) (13)
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Now suppose that Npy — ¢ as N — oo through some subsequence and for
some constant c¢. If ¢ = oo, then the right side of (13) can remain finite (as
it must, since the left side is a probability) only if the probability of k — 1
1s approaches zero as N grows, for any k£ > 1. But then the expected payoff
achieved by coordinating on strategies assigned a 1 approaches zero. If ¢ = 0,
then the right side of (13) approaches zero, requiring the probability of &k 1s
(the left side) to approach zero for any k£ > 1, again giving a zero payoff from
coordinating on strategies assigned a 1. Applying a symmetric argument to
the expected number of zeros (1 — py)N, we find that optimality requires
that either Py N or (1—py)N approach a positive, finite constant. Without
loss of generality, assume PyN — ¢ with 0 < ¢ < oco.

Now, observe that, for a fixed value of pyN = c,

(3 et = (F) =) (-5

N N-1 N—k+1c’f( c)N
— XoeoeoX —m—m (1] — —
N—-—cN—-c¢ N—c k! N
ck e
- 0 (14)

Hence, in the limiting case of large N, the likely number of 1s is governed
by a Poisson distribution with mean ¢. Since an observation of no 1s gives
an expected payoff of 1/N, and an observation of & > 0 1s gives an expected
payoff of 1/k, the limiting payoff (12), as N — oo, is given by

X 1k e

k=1

We now note that the expression in (15) has a unique local maximum. In
particular, ¢ = 0 is a local minimum, while a zero first derivative of (15)
implies that the second derivative is negative. Next, we can find sufficiently
large ¢ and N such that for all ¢ > ¢ and N > N,

V(N,c¢/N) < V(N,1/N).

This follows from the fact that for pyN = 1, the probability of exactly
one value of 1 approaches 1/e, and hence the payoff V(IN,1/N) has a lower
bound arbitrarily close to 1/e for large N. In contrast, for sufficiently large
values of py N = ¢, the probability of fewer than ¢/2 or more than 2¢ ones is
also arbitrarily small when N is large, ensuring that for large ¢, V(N,¢/N)
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has a limiting upper bound arbitrarily close to 2/¢, which suffices for the
claim. Hence, we can restrict attention to values of ¢ in an interval [0,¢].
We now note that (12) converges to (15) uniformly on the compact in-
terval [0,¢]. It suffices for this conclusion that the convergence in (14) is
)V s a
c

uniform for any k. To establish the latter, we note that (1 — <
decreasing sequence of functions converging to the continuous limit e~
the compact set [0,¢], and hence converges uniformly (Rudin [13, Theorem
7.13]). We next note that =1 x - .. x LEEL i minimized at ¢ = 0 and
maximized at ¢ = ¢, and hence furthest from its limit (as N grows) of unity
for one of ¢ € {0,¢}. The convergence for these two values of ¢ thus implies
uniform convergence. Together, these imply the uniform convergence of (12)
to (15).

Any maximizer of (12) must then converge to the maximizer of (15). As
N grows, the optimal value of py /N thus approaches the latter. Solving the
maximization problem given by (15) numerically, we have an optimal value
of ¢ ~ 1.30 and hence

on

1.30
— —.
N

Similarly, we can solve numerically for the limiting optimal payoff (equal to
approximately .50). I

p(N) (16)

6.2 Many Independent Properties

Let there be M properties P, ..., Py, each of which is independently as-
signed to each strategy with a probability p; that is constant across strate-
gies for a given property but may vary across properties. Let ¢* be the
optimal value of pN when there is a single such strategy (=~ 1.30), calcu-
lated in the previous lemma. Let V(N, M) be the expected payoff from a
game of size N with M optimally-chosen such properties, and let V(M) =
limy_oo V(N, M). Then:

Lemma 3
VM) > 1 (1 _ %)W_l (17)
VIM41) - V(M) > (1-V(M):. (18)

Proof. First, let p; = 4 fori = 1,...,n — 1 and p, = 2M~1/N. Then
as N gets large, each of the first M — 1 properties produces a proportion
of 1s arbitrarily close to N/2. Hence, we can proceed as if the strategies

23



are divided into 2~ groups of size N/2M~! each. With a probability that
approaches 1/e, the Mth property produces precisely one 1 on such a group,
allowing a payoff of one. Underestimating the expected payoff by assuming
the payoff to be zero whenever we do not achieve at least one group with
exactly one 1, we obtain (17), which can be reformulated to give (18). ||

It is straightforward to show that this configuration of properties, with
the exception that pps is chosen optimally, is payoff-maximizing, so that
V(M) is maximized by letting

6*21\/[71

pi=3 t=1... . M-1, pM:T-

6.3 The Benefit Function

Let P and P’ be subsets of { P, Py, ..., Py} and let H(P,P’) be the prob-
ability of successful coordination, and the hence expected payoff, when two
players observe the set of properties P and P’. respectively. Recall that
observing the set P ensures that a player observes any realizations of these
properties, but does not ensure that there actually are any realizations.® It
follows immediately from the symmetry of the coordination game that

H(P,P")=H(P',P).

In addition, we have
H(P,P'") < H(P,P).

In particular, consider player ¢ facing an opponent j who observes set P.
Observing P provides player ¢ with complete information about j’s obser-
vation and hence equilibrium behavior. Observing P’ instead of P can only
provide less information, and hence the (weak) inequality.

For each subset P of { Py, Ps,..., Py}, we let G(P, «) be the probability
that a player using the monitoring strategy « observes the realizations of
all of the properties in P and of no properties not in P. Again, some of
the observed properties in P will (disappointingly) be held by none of the
strategies, while others may hold for many strategies; at the same time that

8To keep the notation simple, we assume that the realization of a property for one
strategy is recognized if and only if all realizations of that property are recognized. This
assumption sacrifices no generality (given our assumption below concerning correlation
across players). Assuming that players may perceive some realizations and not others
is equivalent to assuming that all realizations are noticed (if any are) but adjusting the
probability with which realizations occur.
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some of the unobserved properties will be exhibited by many strategies and
some by none.

We assume that G(P,«a) is differentiable and make two monotonicity
assumptions. First, for each set of properties P with P; € P

dG(P, a
dOéz‘

Hence, monitoring property P; more intensely increases the probability that
a set of properties including P; is observed. Next, for any nonempty set P

with P, & P,

dG(PU{F},a) S dG(P, ) - dG(PUA{PR}),a .

doy doy - do; (2())

Hence, monitoring property ¢ more intensely may decrease the probability
that a set excluding P; is observed, but not at a rate that exceeds the
effect of the increased intensity on sets including F;. This latter stipulation
ensures that increasing one’s monitoring intensity cannot decrease the total
probability that some property is observed.?

For example, in the case of M independent properties, it is natural (but
not necessary) to assume that there are M functions gi(aq), ..., gm(m)
from IR, into [0, 1] such that property P; is observed with probability g;(«;),
where the realizations of these random variables are independent across
properties. We then have

G(P,a) = ] g(e) J] (1 —g(ew))

PeP PP
and hence
- IO | )
o Y pep Pig{PU{Fi}}
WGEURY 0D [T o) T (- glay),
i (2 Pj cpP Pj Q{’PU{PZ}}

9The change in the probability that some property is observed is given by

Z dG(PU{P}a) | Z dG(P, )

da; do;
PH#D:P; ¢P PH#D:P; ¢P

)

which (20) ensures is nonnegative.
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ensuring that (20) holds, with equality in the second weak inequality. More
generally, condition (20) also accommodates dependencies between proper-
ties.

We let G(P', /| P, a) be the probability that a player whose monitoring
intensity is o’ observes set P’ given that a player with intensities a observes
P. At one extreme, we could imagine the players’ monitoring outcomes
being independent, so that G(P’, /|P,a) = G(P',a’). In general, however,
we expect such independence to fail. Instead, we think of Nature as de-
termining which strategies have which properties and also determining how
obvious these properties are. In some cases, there may be such an obvi-
ous central strategy that all players observe this property, even those who
monitor “central” with a low intensity. In other cases, one of the strategies
may be interpreted as central, but only after some reflection, so that only
those who monitor “central” with a sufficiently high intensity observe the
property. The important consideration is that we expect observations of
“central” by players who monitor this property with high intensity to be
correlated with observations on the part of those who monitor the prop-
erty with lower intensity. We capture this by assuming that monitoring is
perfectly correlated across players: if player ¢’s monitoring intensities make ¢
more likely than j to observe a set of properties P, then j observes the set P
only if ¢+ does. Hence, more vigilant players are always no less well informed
than less vigilant players. Nature determines which strategies have which
properties and also determines how obvious these properties are, with a set
of properties then being observed by every player whose monitoring makes
that set sufficiently likely.'®

A player choosing monitoring intensities o and facing an opponent choos-
ing intensities o’ has an expected benefit given by the function B(a, o) and
an expected fitness given by

(o, ') = B(a,d)—C(a)

= Y Y H(P,PG(P,a|P',a/)G(P', /) — C(a).
P P

1074 is straightforward to construct formally an underlying probability space with these
properties. For example, suppose that there is only one property Pi, so that the two
relevant sets are {P;} and (). Let the monitoring intensities cause player 1 to observe
{P,} with probability .4 and player 2 with probability .6. To achieve perfectly correlated
monitoring, we need only draw a realization of a random variable z that is uniformly
distributed on [0, 1], with both players observing 1 when 2z < .4, only player 2 when
p € (.4, .6], and neither player when p > .6. Cases with more properties can be addressed
with more elaborate but analogous constructions.
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It follows immediately from the symmetry of the coordination game that

The assumption that monitoring is perfectly correlated across players en-
sures that

B(a, §) < min{B(a,a), B(f,0)},

since monitoring that is perfectly correlated across players ensures that when
player ¢ plays intensities o against an opponent playing «a, that 's payoff
conditional on j observing P is H(P,P). If instead ¢ plays o/, then i’s payoff
conditional on j observing P can only be lower. This establishes Assumption
1.

The continuous differentiability of A(«) follows from the corresponding
differentiability assumption on G(P’,d/|P, ).

Lemma 4 A(a) is increasing in «.

Proof. We have

N
=Y HP)G(P,a) =Y (—h((]”vp) Y 7/1(1279)) G(P,a),
P k=1

P

where h(k,P) is the probability that the minimum number of strategies
distinguished by a common joint property is k after observing P.!! Let W(q)
be the set of sets of properties that do not include property . Then we have:

dG(P, ) (PU {z} a)

doy - Z H(P) da;

+ > HPU{})

PeT(3)

Because H(P U {i}) > H(P), it follows from (20) that dA(a)/da; > 0. ||

6.4 Nonconcave A(a) — C(a)

Let there be a single property P. Let g(a) be the probability that this
property is observed by a player who monitors with intensity a € IR™,
where

gla)=1- —. (21)

" Notice that h(k, P) = 0 when N/2 < k < N, since the complementary set of strategies
must then contain a smaller nonempty set characterized by a common joint property.
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Figure 7: Benefit and cost functions for which A(a) — C'(a) is not concave.

Let H(P,P) = .5 and C(a) = .3a. Let N be sufficiently large that we can
take 1/N =~ 0. Figure 7 shows the function

A) =3 (1- =) (22)

as well as the cost function. It is immaterial that the cost function is only
weakly concave, but significant that A(a) —C/(«) is not concave. The fitness
m(a) = A(a)—C(a) has two local maxima, at o« = 0 and « ~ 1.16, separated
by a local minimum at a ~ .34. It is then easy to construct evolutionary
processes that can become trapped at the inefficient equilibrium a = 0. It
would be common to say that this “evolutionary landscape is rugged,” in
which case it is no surprise that evolution can lead to inefficient outcomes.
In the case of a single property P, the concavity of A(a) — C(«a) can
be ensured by assuming that C(«) is convex and the function G({P}, a) is
concave (in contrast to (21)). In more complicated settings, the concavity
of A(a) — C(a) becomes a joint restriction on the monitoring technology.
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6.5 Semi-Differentiability

Let B be semidifferentiable. Then notice that
B(a+ pu,a + pu) — B(a,a)  B(a+ pu,a + pu) — B(a + pu, a)+B(a + pu, ) — B(a, @)

pu N pu pu
(23)

As p | 0, the left side converges to A,(a). The second term on the left side
converges to Bl (a, ). Rewrite the first term on the left side as

B(B, 8 — pu) — B(S,5)
—pu

where 8 = a+pu. Now consider a compact set B(«) of values of 3 containing
a in its interior. For a fixed § in this set, (24) converges to B,, () as p | 0.
Moreover, Assumption 4 ensures that (24) is an increasing sequence. Rudin
[13, Theorem 7.13] (replacing f, with —f,, in the statement of the theorem)
then implies that the convergence is uniform on B(«). Using the uniformity
of the convergence and the continuity of B (3, 3), for any € > 0, there
must be a p(€) sufficiently small that (24) is within €/2 of B, (3, ) for any
B € B(a), and also such that By, (o + pu, a + pu) is within €/2 of By («, «v).
But then the first term on the left side of (23) must converge to B,, (o, «),
giving the result.

6.6 Efficient Monitoring

Lemma 5 An efficient outcome can always be achieved with pure, symmet-
ric monitoring intensities.

Proof. We first recall that
B(a,a) > B(g,a). (25)

Hence, the highest payoff realization in any efficient mixed strategy must be
of the form B(a, a) — C(«a) for some « in the support of the mixed strategy.
The pure strategy a must then either then be efficient, or payoffs must be
constant over all realized outcomes in the mixed strategy. The latter is
precluded by Assumption 3. I
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